
Wire Security Review – Phase 2 –Web, Calling
forWire Swiss GmbH

Final Report

2018-03-07

FOR PUBLIC RELEASE

Contents

1 Summary 2

2 Findings 3

2.1 Web Application . 4
2.2 Calling . 12

3 About 18

1

1 Summary

This report documents the findings identified in the Wire web application and calling
components.
From a total of seven vulnerabilities that were discovered during the test, one was
classified as high severity, five as medium, and one as low. No observations without a
direct security impact have been made. The issue with the highest severity was an
outdated JavaScript framework that could potentially allow injection attacks against the
application. All identified vulnerabilities except for a DoS issue require preconditions to
be exploited successfully.
ThemainWire repositories covered during the review are wire-webapp andwire-audio-
video-signaling.
This review does not cover:

• code of audio/video codecs and theWebRTC implementation;
• code of third-party dependencies and template engines.

Wire has patched ormitigated the discovered vulnerabilities after they were reported.
The work was performed between March 7th and July 5th, 2017, by Jean-Philippe
Aumasson (Kudelski Security) and Markus Vervier (X41 D-Sec GmbH). A total of 7.5
person-days were spent, withmost of the time spent reviewing code and investigating
potential security issues.

2

2 Findings

This security review report covers several components of theWire suite of applications:

• Theweb application (section 2.1)
• Signalling components of the calling protocol (section 2.2)

The work was performed betweenMarch and July 2017, with a total of 4.5 person-days
(Kudelski Security) and 3 person-days (X41D-Sec). The code subject to this reviewwas
available in the repositories wire-webapp (revision
ef30665e6824047a60af00405b10758897db46fa) and wire-audio-video-signaling
(revision 99799d12f49fcddf7252748b8f3dceff3625d0fe).

3

Wire Security Review – Phase 2 –Web, Calling Wire Swiss GmbH

2.1 WEB APPLICATION

We reviewed theWire web application (available in the repository https://github.c
om/wireapp/wire-webapp, revision ef30665e6824047a60af00405b10758897db46fa)
for common web application vulnerabilities. This app is the base for the standalone
desktop clients based on Electron1, and is also available for usage in normal browsers
at https://app.wire.com. This reviewwas focused on the web application components
and does not consider Electron and the potential attack surface that it might provide.

1https://electron.atom.io/

FOR PUBLIC RELEASE Page 4 of 19

https://github.com/wireapp/wire-webapp
https://github.com/wireapp/wire-webapp
https://app.wire.com
https://electron.atom.io/

Wire Security Review – Phase 2 –Web, Calling Wire Swiss GmbH

2.1.1 WIRE-P2-00: Possible XSS Via Device Location

Severity: MEDIUM
CWE: 123

2.1.1.1 Description

TheWirewebapplicationwill display the locationwhere auser’s devicewasfirst activated
and does not filter the resolved names for markup.
Locationdata is resolvedusing theGoogleMapsAPI2. Givennumeric location coordinates
it will resolve them to a name. This name is then used unfiltered in HTML markup as
displayed in figure 2.1.

Figure 2.1: Unfiltered Location Data

This markup is later used in the user preferences to fill a template using Knockout3
templates:

1 <div class="label-xs" data-bind="html: activated_in"></div>

As seen above the data-bind attribute has the html: option enabled whichmeans that
markup will be inserted unfiltered into the page. An attacker able to control data on a
compromised backend or the GoogleMaps APImight insert maliciousmarkup into the
wire-webapp page context.
Wire fixed 4 this issue by replacing the html attribute with the text attribute.

2https://developers.google.com/maps/
3https://knockoutjs.com
4https://github.com/wireapp/wire-webapp/commit/a28c2cb6d3efd49ea61bbdbd67f3a

f734753bd8a

FOR PUBLIC RELEASE Page 5 of 19

https://developers.google.com/maps/
https://knockoutjs.com
https://github.com/wireapp/wire-webapp/commit/a28c2cb6d3efd49ea61bbdbd67f3af734753bd8a
https://github.com/wireapp/wire-webapp/commit/a28c2cb6d3efd49ea61bbdbd67f3af734753bd8a

Wire Security Review – Phase 2 –Web, Calling Wire Swiss GmbH

2.1.1.2 Solution Advice

We recommend to use the text: option of the data-bind attribute to prevent unfiltered
data entering the web page. Additionally all untrusted user data should be enclosed
in sandboxed iFrames with an opaque origin in order to mitigate potential flaws in the
Knockout template engine.

FOR PUBLIC RELEASE Page 6 of 19

Wire Security Review – Phase 2 –Web, Calling Wire Swiss GmbH

2.1.2 WIRE-P2-01: Outdated JavaScript-Component With Known
Vulnerabilities

Severity: HIGH
CWE: 937

2.1.2.1 Description

The antiscroll-2 package used by the wire web application depends on a version of jQuery
with known vulnerabilities.
Using the tool nsp5, the dependency on jQuery version 2.1.4 was detected as shown in
figure 2.2.

Figure 2.2: Vulnerable Package.

XSS attacks might be conducted when AJAX calls are made to untrusted sites. During the
time given we could not verify if this was the case. It is still recommended to upgrade all
packages with security vulnerabilities in order tomitigate potential technical risks.
Wire has patched the version of jQuery in use against this attack in parallel to this review
after an internal evaluation. It recently migrated 6 7 to a newer version of jQuery that

5https://nodesecurity.io/opensource
6https://github.com/wireapp/wire-webapp/commit/4d016d5b1bca75fb39708502af7f19f4f8e

ffa36
7https://github.com/wireapp/antiscroll-2/commit/eb1b6a21aca0b2d35fd73231662d801f3f

66d265

FOR PUBLIC RELEASE Page 7 of 19

https://nodesecurity.io/opensource
https://github.com/wireapp/wire-webapp/commit/4d016d5b1bca75fb39708502af7f19f4f8effa36
https://github.com/wireapp/wire-webapp/commit/4d016d5b1bca75fb39708502af7f19f4f8effa36
https://github.com/wireapp/antiscroll-2/commit/eb1b6a21aca0b2d35fd73231662d801f3f66d265
https://github.com/wireapp/antiscroll-2/commit/eb1b6a21aca0b2d35fd73231662d801f3f66d265

Wire Security Review – Phase 2 –Web, Calling Wire Swiss GmbH

has no known vulnerabilities at the time of writing.

2.1.2.2 Solution Advice

We suggest to update the packages to recent versions without known vulnerabilities.
If fixed versions are not available for specific packages, it is recommended to disable
them temporarily until a fix is implemented. Additionally an automated process should
be implemented that regularly checks for packages with known vulnerabilities.

FOR PUBLIC RELEASE Page 8 of 19

Wire Security Review – Phase 2 –Web, Calling Wire Swiss GmbH

2.1.3 WIRE-P2-02: Access Token Leak Via URL Parameter

Severity: MEDIUM
CWE: 123

2.1.3.1 Description

The access token used to authenticate against theWire backend is contained in the URL
parameters of different HTTP requests. For example it is attached to the URL used to
download encrypted assets such as images as displayed in figure 2.3. The token could for
example potentially be cached in proxy server logs. Wire stated that the scenarios where
this is exploitable are not part of their threat model and the issue is risk accepted.

Figure 2.3: Access Token Leak Via URL Parameter

2.1.3.2 Solution Advice

Sensitive tokens and credentials should not be stored in URL parameters. It is
recommended to use dedicated authorization request headers or HTTP-POST
parameters to transmit them.

FOR PUBLIC RELEASE Page 9 of 19

Wire Security Review – Phase 2 –Web, Calling Wire Swiss GmbH

2.1.4 WIRE-P2-03: Lax Parsing of Base64 Strings

Severity: LOW
CWE: 228

2.1.4.1 Description

The base64 decoding function z.util.base64_to_array tolerates invalid base64 strings.
This function is used to decode encrypted messages in the following code
(z.cryptography.CryptographyRepository.decrypt_event):

1 session_id = @_construct_session_id event.from, event.data.sender
2 ciphertext = z.util.base64_to_array(event.data.text or event.data.key).buffer
3 return @cryptobox.decrypt(session_id, ciphertext).then (plaintext) ->

z.proto.GenericMessage.decode plaintext,→

It follows that an encodedmessagemodified in transit (accidentally or maliciously) may
be accepted as valid, if the invalid base64 string decodes to the correct array of bytes. In
the following test invalid characters are tolerated:

1 z.util.array_to_base64(z.util.base64_to_array("d2lyZQ==*** ??? ***"))
2 "d2lyZQ=="

As RFC 3548 explains, “Non alphabet characters may be exploited as a "covert channel",
where non-protocol data canbe sent for nefarious purposes.” AlthoughMIME for example
tolerates non-base64 characters, it is generally safer to reject them.
Amalicious peermay use this lax decoding to send large invalid strings that the base64
decode as short valid byte arrays.
Also the base64 decoder tolerates invalid base64 encodings as for example
single-character or padding-less strings.

FOR PUBLIC RELEASE Page 10 of 19

Wire Security Review – Phase 2 –Web, Calling Wire Swiss GmbH

The root cause is the use of sodium.from_base64, a base64 decoder part of libsodium.js
that will accept malformed base64 strings (first by stripping non-base64 characters, and
then by lazily parsing the data received, decoding even invalid strings).
However, this behavior will not allow attackers to forge valid data with malicious content,
because the underlying data is encrypted and authenticated. The security risk is therefore
low.
The issue was patched 8 by libsodium andWire migrated 9 to the patched version of
libsodiumwhile refactoring.

2.1.4.2 Solution Advice

A strict base64 decoding should be used, similar to that in JavaScript’s atob function.

8https://github.com/jedisct1/libsodium.js/issues/89
9https://github.com/wireapp/wire-web-packages/commit/4a3c0f0fcf6cedc10a37e9309a57a

c45fe2493e3

FOR PUBLIC RELEASE Page 11 of 19

https://github.com/jedisct1/libsodium.js/issues/89
https://github.com/wireapp/wire-web-packages/commit/4a3c0f0fcf6cedc10a37e9309a57ac45fe2493e3
https://github.com/wireapp/wire-web-packages/commit/4a3c0f0fcf6cedc10a37e9309a57ac45fe2493e3

Wire Security Review – Phase 2 –Web, Calling Wire Swiss GmbH

2.2 CALLING

We reviewed core components of the new callingmechanism, namely

• The cryptographic protocol leveraging the Proteus session in order to establish an
SRTPmaster key, and its implementation in thewire-audio-video-signaling repository,
revsion 99799d12f49fcddf7252748b8f3dceff3625d0fe.

• Key implementation aspects of the calling protocol, such as the parsing of signaling
messages. For example, we fuzz-tested the decoder of SDP descriptors (using afl).

The review focused on the changes introduced in the new callingmechanism, and does
not cover all components nor all potential risks associated to theWire calls. For example,
we did not perform an in-depth review ofWebRTC security as used inWire, nor did we
assess risks associated with traffic analysis or with the ICE functionality.
All of these issues have been addressed byWire, andwe reviewed the relevant patches
to confirm their effectiveness.
Full disclosure: We contributed to the design of the key establishment protocol, in
particular we recommended the key derivation mechanism involved in the channel
binding.

FOR PUBLIC RELEASE Page 12 of 19

Wire Security Review – Phase 2 –Web, Calling Wire Swiss GmbH

2.2.1 WIRE-P2-08: Denial-of-Service ViaMalformed JSON

Severity: MEDIUM
CWE: 730

2.2.1.1 Description

Signalling messages are JSON-formatted strings sent by calling peers to one another.
They are decoded by a function jzon_decode that relies on the libre library’s json_decode.
However, this function will enter a virtually infinite loop when fed certain values,
allowing a peer to DoS the other peer. For example, the (valid) JSON string
"[1e10000000000000000000]", although it just encodes the number 1, will force the
decoder to enter a loop of 263 iterations, in the following function from decode.c:

1 static inline uint64_t mypower10(uint64_t e)
2 {
3 uint64_t i, n = 1;
4

5 for (i=0; i<e; i++)
6 n *= 10;
7

8 return n;
9 }

We could not verify the exploitability of this property, since we did not find any string
that crashes the decoder (based on test cases from e.g. https://github.com/nst/JSONT
estSuite). However, we believe that amore thorough investigation will allow attackers
to createmalicious strings triggering this infinite loop.
The issue was fixed10 upstream and adopted byWire.
10https://github.com/creytiv/re/commit/f8b24b462dc9cf95242d450d82e7fadbf4b0d0fd#diff

-49720871786ef0465bcfdb6f67547ff0

FOR PUBLIC RELEASE Page 13 of 19

https://github.com/nst/JSONTestSuite
https://github.com/nst/JSONTestSuite
https://github.com/creytiv/re/commit/f8b24b462dc9cf95242d450d82e7fadbf4b0d0fd#diff-49720871786ef0465bcfdb6f67547ff0
https://github.com/creytiv/re/commit/f8b24b462dc9cf95242d450d82e7fadbf4b0d0fd#diff-49720871786ef0465bcfdb6f67547ff0

Wire Security Review – Phase 2 –Web, Calling Wire Swiss GmbH

2.2.1.2 Solution Advice

To eliminate this class of DoS strings, the decoder should implement a less naive
exponentiation algorithm (such as basic square-and-multiply, running in linear time
rather than exponential time in the exponent’s bit-length).

FOR PUBLIC RELEASE Page 14 of 19

Wire Security Review – Phase 2 –Web, Calling Wire Swiss GmbH

2.2.2 WIRE-P2-09: Late Zeroization of Keys

Severity: MEDIUM
CWE: 730

The function kase_get_sessionkeys computes SRTPmaster keys for the transmitted and
received streams using libsodium’s newAPI:

1 if (is_client) {
2 if (crypto_kx_client_session_keys(session_rx, session_tx,
3 kase->publickey,
4 kase->secretkey,
5 publickey_remote) != 0) {
6

7 warning("kase: Suspicious server public key\n");
8 return EPROTO;
9 }

10 }
11 else {
12 if (crypto_kx_server_session_keys(session_rx, session_tx,
13 kase->publickey,
14 kase->secretkey,
15 publickey_remote) != 0) {
16

17 warning("kase: Suspicious client public key\n");
18 return EPROTO;
19 }
20 }

The peer’s ephemeral Diffie-Hellman secret kase->secretkey is then no longer used. If
all goes well, the private key is zeroizedwhen themediaflow destructor is called, at the
end of the session (throughmem_deref(mf->kase)which will call kase_destructor). But if
the session crashes before themediaflow session is properly closed, then the private key
will remain in memory. An attacker running unprivileged processes on the samemachine
may therefore recover the keys after reusing thememory previously allocated to storing
the private keys. This attack scenario is nonetheless unlikely here.

FOR PUBLIC RELEASE Page 15 of 19

Wire Security Review – Phase 2 –Web, Calling Wire Swiss GmbH

Wire fixed11 this issue by zeroizing the secret key at the end of the session key generation
function.

2.2.2.1 Solution Advice

It would be safer to zeroize the private key just after it’s used, namely right after the
above session keys computations.

11https://github.com/wireapp/wire-audio-video-signaling/blob/cea426e906d2c819d76d
d7949858a9758f7b8f2a/src/kase/kase.c#L142

FOR PUBLIC RELEASE Page 16 of 19

https://github.com/wireapp/wire-audio-video-signaling/blob/cea426e906d2c819d76dd7949858a9758f7b8f2a/src/kase/kase.c#L142
https://github.com/wireapp/wire-audio-video-signaling/blob/cea426e906d2c819d76dd7949858a9758f7b8f2a/src/kase/kase.c#L142

Wire Security Review – Phase 2 –Web, Calling Wire Swiss GmbH

2.2.3 WIRE-P2-10: Outdated libvpx allowing remote DoS

Severity: MEDIUM
CWE: 730

2.2.3.1 Description

The libvpx video codec currently used is version 1.6.0, which includes a DoS vulnerability
that allows for remote DoS on AndroidMediaserver (CVE-2017-0393). Version 1.6.1 is
not vulnerable, and integrates the following patch: https://android.googlesource.c
om/platform/external/libvpx/+/6886e8e0a9db2dbad723dc37a548233e004b33bc

Potential impact onWire is also a remote Denial-of-Service (DoS) as well.
The library is included in repository wire-audio-video-signalling as submodule.
When building the application the fixed version 1.6.1 of libvpx is automatically fetched
and used.

2.2.3.2 Solution Advice

Update to libvpx 1.6.1.

FOR PUBLIC RELEASE Page 17 of 19

https://android.googlesource.com/platform/external/libvpx/+/6886e8e0a9db2dbad723dc37a548233e004b33bc
https://android.googlesource.com/platform/external/libvpx/+/6886e8e0a9db2dbad723dc37a548233e004b33bc

3 About

Kudelski Security
route de Genève, 22-24
1033 Cheseaux-sur-Lausanne
Switzerland

Kudelski Security is an innovative, independent Swiss provider of tailored cyber and
media security solutions to enterprises and public sector institutions. Our team of
security experts delivers end-to-end consulting, technology, managed services, and
threat intelligence to help organizations build and run successful security programs. Our
global reach and cyber solutions focus is reinforced by key international partnerships.
Kudelski Security is a division of Kudelski Group.
For more information, please visit https://www.kudelskisecurity.com.

X41D-Sec GmbH
Dennewartstr. 25-27
D-52068 Aachen
Germany

X41 D-Sec is an expert provider for application security services. Having extensive
industry experience and expertise in the area of information security, a strong core
security team of world class security experts enables X41 D-Sec to perform premium
security services.
Fields of expertise in the area of application security are security centered code reviews,

18

https://www.kudelskisecurity.com

Wire Security Review – Phase 2 –Web, Calling Wire Swiss GmbH

binary reverse engineering and vulnerability discovery. Custom research and a IT security
consulting and support services are core competencies ofX41D-Sec.
For more information, please visit https://www.x41-dsec.de.

FOR PUBLIC RELEASE Page 19 of 19

https://www.x41-dsec.de

	Summary
	Findings
	Web Application
	Calling

	About

