
Penetration Test on Backstage
for the Backstage team

Final Report and Management Summary

2022-08-24

X41 D-SEC GmbH
Krefelder Str. 123
D-52070 Aachen

Amtsgericht Aachen: HRB19989
https://x41-dsec.de/

info@x41-dsec.de

Organized by the Open Source Technology Improvement Fund

https://x41-dsec.de/
info@x41-dsec.de

Penetration Test on Backstage for the Backstage team

Revision Date Change Author(s)

1 2022-05-25 Preliminary Report M. Vervier
2 2022-08-18 Public Report E. Sesterhenn, Y. Klawohn, M. Vervier

X41 D-Sec GmbH FOR PUBLICACTION Page 1 of 63

Penetration Test on Backstage for the Backstage team

Contents

1 Executive Summary 4

2 Introduction 6
2.1 Methodology . 6
2.2 Findings Overview . 7
2.3 Scope . 8
2.4 Coverage . 9
2.5 Recommended Further Tests . 10

3 Rating Methodology for Security Vulnerabilities 11
3.1 Common Weakness Enumeration . 12

4 Results 13
4.1 Findings . 13
4.2 Side Findings . 39

5 About X41 D-Sec GmbH 62

X41 D-Sec GmbH FOR PUBLICACTION Page 2 of 63

Penetration Test on Backstage for the Backstage team

Dashboard

Target
Customer the Backstage team
Name Backstage
Type Web Application
Version v0.70.0 (04bb0dd82) and 1.4.0 (2231987)
Engagement
Type White Box Penetration Test
Consultants 4: Luc Gommans, Dr. Alexander Pirker, Yasar Klawohn, Eric

Sesterhenn, and Markus Vervier
Engagement Effort 38 person-days, 2022-03-03 to 2022-08-11
Total issues found 12

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

None - 15

Low - 3

Medium - 5

High - 2

Critical - 2

CWE-400 (3)

CWE-200 (2)
CWE-613 (1)

CWE-799 (1)

CWE-303 (1)

CWE-287 (1)

Figure 1: Issue Overview (l: Severity, r: CWE Distribution)

0 1 2 3 4 5 6 7 8

Untested - 0

Fully - 8

Partly - 0

N/A (Not Applicable) - 0

Not - 4

Figure 2: Remediation Status

X41 D-Sec GmbH FOR PUBLICACTION Page 3 of 63

mailto:luc.gommans@x41-dsec.de
mailto:yasar.klawohn@x41-dsec.de
mailto:eric.sesterhenn@x41-dsec.de
mailto:eric.sesterhenn@x41-dsec.de
mailto:markus.vervier@x41-dsec.de

Penetration Test on Backstage for the Backstage team

1 Executive Summary

In March and April 2022, X41 D-Sec GmbH performed a White Box Penetration Test against
Backstage to identify vulnerabilities and weaknesses in the platform version 0.70.0. In August
2022, X41 inspected the fixes for the discovered issues applied until version 1.4.0.
The test was organized by the Open Source Technology Improvement Fund1, a corporate non-
profit dedicated to securing open source applications and infrastructure.
A total of twelve vulnerabilities were discovered during the test by X41. Twowere rated as critical,
two were classified as high severity, five as medium, and three as low. Additionally, 15 issues
without a direct security impact were identified.

Low - 3

Medium - 5

High - 2

Critical - 2

Figure 1.1: Issues and Severity
Backstage is a software catalog and development platform that enables teams to quickly ship
high-quality code.

1 https://ostif.org

X41 D-Sec GmbH FOR PUBLICACTION Page 4 of 63

https://ostif.org

Penetration Test on Backstage for the Backstage team

In a White Box Penetration Test, the testers receive all available information about the target,
including source code. The test and retestswere performed by three experienced security experts
between 2022-03-03 and 2022-08-11.
The most severe issues are related to the support of multiple authentication providers. These
allow the login of users that are not registered at Backstage but onlywith the third party providers,
leading to potential authentication and authorization problems. Additionally, a misconfiguration
of the JWT token used for session identification was identified, which allows the impersonation
of other users with a valid JWT token.
After the initial test, the issues were reported and discussed with the developers. Subsequently,
fixes and mitigations were developed by the Backstage team and verified by X41.
X41 recommends to include the reasoning for issues risk accepted by the Backstage team into
the end user documentation as recommendations or warnings. This will ensure that users of
Backstage can make informed decisions to ensure a safe operation.
In conclusion the code of Backstage is considered to be of good quality given the complexity of
the system and its purpose. The interaction with the Backstage team was smooth and all issues
could be discussed openly.

X41 D-Sec GmbH FOR PUBLICACTION Page 5 of 63

Penetration Test on Backstage for the Backstage team

2 Introduction

X41 reviewed Backstage, setup documentation, and a number of its plugins. The software is
used to build developer portals to create an overview of the different software running in an
organization, integrating with external systems for features like Continuous Integration.
Compromising Backstage in an organization would allow an attacker to capture user authentica-
tion tokens — as they use OAuth — or other mechanisms to trigger actions on those systems.

2.1 Methodology

X41 reviewed Backstage as per the scope defined below. The review was mainly based on a
source code review alongside with analyses of local installations of the software on test systems.
Default installations, where the setup instructions are followed correctly, were checked for weak-
nesses such as unnecessarily broad permissions or missing API1 restrictions.
A manual approach for penetration testing and for code review is used by X41. This process is
supported by tools such as static code analyzers and industry standard web application security
tools2.
X41 adheres to established standards for source code reviewing and penetration testing. These
are in particular the CERT Secure Coding3 standards and the Study - A Penetration Testing Model4
of the German Federal Office for Information Security.

1 Application Programming Interface2 https://portswigger.net/burp3 https://wiki.sei.cmu.edu/confluence/display/seccode/SEI+CERT+Coding+Standards4 https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/Studies/Penetration/penetrati
on_pdf.pdf?__blob=publicationFile&v=1

X41 D-Sec GmbH FOR PUBLICACTION Page 6 of 63

https://portswigger.net/burp
https://wiki.sei.cmu.edu/confluence/display/seccode/SEI+CERT+Coding+Standards
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/Studies/Penetration/penetration_pdf.pdf?__blob=publicationFile&v=1
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/Studies/Penetration/penetration_pdf.pdf?__blob=publicationFile&v=1

Penetration Test on Backstage for the Backstage team

2.2 Findings Overview

DESCRIPTION SEVERITY REMEDIATION ID REF
No Expiration Claim for JWT Access Token MEDIUM FULLY SPBS-CR-22-01 4.1.1
Constant Subject Claim for JWT Access To-ken HIGH NOT SPBS-CR-22-02 4.1.2
Missing Rate Limiting for Backend Compo-nents LOW NOT SPBS-CR-22-03 4.1.3
Unauthenticated DoS Situation Due to Scaf-folder Event Streaming MEDIUM NOT SPBS-CR-22-04 4.1.4
Information Leakage through Misconfigura-tion via Templates LOW FULLY SPBS-CR-22-05 4.1.5
Potential Information Leakage through Sym-links in Repositories HIGH FULLY SPBS-CR-22-06 4.1.6
DoS Situation for catalog-backend ThroughProcessing Faulty Locations and Entities MEDIUM NOT SPBS-CR-22-08 4.1.7
Authentication of Unknown Users in Auth-Backend CRITICAL FULLY SPBS-CR-22-09 4.1.8
AccountHijackingDue to Support ofMultipleAuthentication Providers CRITICAL FULLY SPBS-CR-22-10 4.1.9
Execution of Arbitrary Docker Images in Scaf-folder MEDIUM FULLY SPBS-CR-22-11 4.1.10
Arbitrary Writes to File System of techdocs-backend MEDIUM FULLY SPBS-CR-22-12 4.1.11
DoS Situation Due to multiple Techdoc Builds LOW FULLY SPBS-CR-22-13 4.1.12
Log Injection NONE NOT SPBS-CR-22-100 4.2.1
Missing Archive Validation Leads to PotentialRemote Code Execution NONE FULLY SPBS-CR-22-101 4.2.2
Copying of Workspace to Arbitrary File Sys-tem Locations NONE NOT SPBS-CR-22-102 4.2.3
No Authentication Required for scaffolder-backend NONE NOT SPBS-CR-22-103 4.2.4
Wrong Age Check for Server Certificate NONE NOT SPBS-CR-22-104 4.2.5
No Check Whether File for Location Spec Ex-ists on Adding Them NONE FULLY SPBS-CR-22-105 4.2.6
Yarn Installation Instructions Deprecated NONE NOT SPBS-CR-22-106 4.2.7
nvm Installation Unverified NONE NOT SPBS-CR-22-107 4.2.8
Use of Privileged Docker User NONE NOT SPBS-CR-22-108 4.2.9
Docker Best Practices Not Applied NONE NOT SPBS-CR-22-109 4.2.10
Expired Public Key Cleanup Only on ListingPublic Keys NONE NOT SPBS-CR-22-110 4.2.11
Missing Operational Security Guidelines NONE NOT SPBS-CR-22-111 4.2.12
Insecure Kubernetes Examples in contribFolder NONE NOT SPBS-CR-22-112 4.2.13
Recommended Firewalling of Back-End NONE PARTLY SPBS-CR-22-113 4.2.14
Missing/Broken Authentication for AncestryEndoint in catalog-backend NONE FULLY SPBS-CR-22-114 4.2.15

Table 2.1: Security-Relevant Findings

X41 D-Sec GmbH FOR PUBLICACTION Page 7 of 63

Penetration Test on Backstage for the Backstage team

2.3 Scope

The aim of this test is to answer following key questions:
1. Is the core code safe from the attack vectors identified in the threat model?
2. What processes can the Backstage team adopt to screen plugins for security issues?
3. Are the project’s build and deploy systems safe from intrusion? Can policies and procedures

be improved?
4. Does backstage have sufficient documentation to prevent a junior admin from making seri-

ous security mistakes when setting up a backstage project? Are the default settings gener-
ally secure?

5. Is backstage’s complex auth system robust and resilient against intrusion?
For the code review, the scope consisted mainly of the latest stable release of the main repository
on 2022-03-03:
https://github.com/backstage/backstage/tree/v0.70.0

The retest was performed against version 1.4.0 of Backstage and a list of commits was provided
to the testers.
The following five most important plugins for Backstage were included in the source code review:

• plugins/auth-backend

• plugins/search-backend

• plugins/catalog-backend

• plugins/scaffolder-backend

• TechDocs, consisting of:
– plugins/techdocs

– plugins/techdocs-backend

– packages/techdocs-common

Finally, technical documentation to set up Backstage is in scope, located under:
https://backstage.io/docs/

X41 D-Sec GmbH FOR PUBLICACTION Page 8 of 63

https://github.com/backstage/backstage/tree/v0.70.0
https://backstage.io/docs/

Penetration Test on Backstage for the Backstage team

2.4 Coverage

A security assessment attempts to find the most important or sometimes as many of the existing
problems as possible, though it is practically never possible to rule out the possibility of additional
weaknesses being found in the future.
The time allocated to X41 for this assessment was sufficient to yield a reasonable coverage of the
given scope. As requested by the Backstage team, the review of the build system was replaced
by a retest of the findings made during the source code review.
In particular the following questions as part of the scope definition were handled:

2.4.1 Is the core code safe from the attack vectors identified in the threat
model?

X41 inspected the code for the security defects defined in the threat model and found several
defects, two of them critical. The security relevant issues found are described in section 4.1.

2.4.2 What processes can the Backstage team adopt to screen plugins for se-
curity issues?

X41 discussed the security efforts and general security strategy regarding the code base and
plugins with the Backstage team. Recommendations for further tests and actions are given in
section 2.5 and side finding 4.2.12.

2.4.3 Are the project’s build and deploy systems safe from intrusion? Can poli-
cies and procedures be improved?

This question has not been addressed and X41 was asked by the Backstage team to perform a
retest of the findings instead.

X41 D-Sec GmbH FOR PUBLICACTION Page 9 of 63

Penetration Test on Backstage for the Backstage team

2.4.4 Does backstage have sufficient documentation to prevent a junior ad-
min from making serious security mistakes when setting up a backstage
project? Are the default settings generally secure?

X41 reviewed the documentation and found it mostly sufficient in detail. As an improvement,
notes about potential pitfalls and additionally needed security efforts were documented.

2.4.5 Is backstage’s complex auth system robust and resilient against intru-
sion?

The authentication system offers a permission system to restrict access to resources. The imple-
mentation of this system was found to be correctly enforcing permissions, if they were enabled.
Security issues might arise when a plugin is not applying checks for the permissions correctly and
plugins need to be adapted in case new permissions are added. It is recommended to make the
permission system more fail safe and add warning notes about potential pitfalls in the documen-
tation for plugin developers.

2.5 Recommended Further Tests

It is recommended to establish a process for code regular reviewing of plugins.

X41 D-Sec GmbH FOR PUBLICACTION Page 10 of 63

Penetration Test on Backstage for the Backstage team

3 Rating Methodology for Security
Vulnerabilities

Security vulnerabilities are given a purely technical rating by the testers as they are discovered
during the test. Business factors and financial risks for the Backstage team are beyond the scope
of a penetration test which focuses entirely on technical factors. Yet technical results from a
penetration test may be an integral part of a general risk assessment. A penetration test is based
on a limited time frame and only covers vulnerabilities and security issues which have been found
in the given time, there is no claim for full coverage.
In total, five different ratings exist, which are as follows:

Severity Rating
None
Low

Medium
High
Critical

A low rating indicates that the vulnerability is either very hard for an attacker to exploit due
to special circumstances, or that the impact of exploitation is limited, whereas findings with a
medium rating are more likely to be exploited or have a higher impact. High and critical ratings
are assigned when the testers deem the prerequisites realistic or trivial and the impact significant
or very significant.
Findings with the rating ‘none’ are called side findings and are related to security hardening, af-
fect functionality, or other topics that are not directly related to security. X41 recommends to
mitigate these issues as well, because they often become exploitable in the future. Doing so will
strengthen the security of the system and is recommended for defense in depth.

X41 D-Sec GmbH FOR PUBLICACTION Page 11 of 63

Penetration Test on Backstage for the Backstage team

3.1 CommonWeakness Enumeration

The CWE1 is a set of software weaknesses that allows the categorization of vulnerabilities and
weaknesses in software. If applicable, X41 provides the CWE-ID for each vulnerability that is
discovered during a test.
CWE is a very powerful method to categorize a vulnerability and to give general descriptions and
solution advice on recurring vulnerability types. CWE is developed byMITRE2. More information
can be found on the CWE website at https://cwe.mitre.org/.

1 Common Weakness Enumeration2 https://www.mitre.org

X41 D-Sec GmbH FOR PUBLICACTION Page 12 of 63

https://cwe.mitre.org/
https://www.mitre.org

Penetration Test on Backstage for the Backstage team

4 Results

This chapter describes the results of this test. The security-relevant findings are documented in
Section 4.1. Additionally, findings without a direct security impact are documented in Section 4.2.

4.1 Findings

The following subsections describe findings with a direct security impact that were discovered
during the test.

4.1.1 SPBS-CR-22-01: No Expiration Claim for JWT Access Token

Severity: MEDIUM
Remediation: FULLY
CWE: 613 – Insufficient Session Expiration
Affected Component: packages/backend-common/src/tokens/ServerTokenManager.ts:get-

Token()

4.1.1.1 Remediation

The JWT1 are generated with an expiration time set to TOKEN_EXPIRY_AFTER, which is one hour
after the generation. This resolves this issue. The corresponding pull requests are 112622 and
118073.

1 JSONWeb Token2 https://github.com/backstage/backstage/pull/112623 https://github.com/backstage/backstage/pull/11807

X41 D-Sec GmbH FOR PUBLICACTION Page 13 of 63

https://cwe.mitre.org/data/definitions/613.html
https://github.com/backstage/backstage/pull/11262
https://github.com/backstage/backstage/pull/11807

Penetration Test on Backstage for the Backstage team

4.1.1.2 Description

During a source code review of the backend-common package it was noticed that the ServerTo-
kenManager.ts file generates JWT access tokens. These access tokens, however, do not contain
any expiration claim. An access token therefore stays valid indefinitely.
An attacker who obtains such an access token is able to impersonate the victim at any time,
thereby obtaining access without any time restriction by using this access token. This potentially
results in information leakages, or other unauthorized actions invoked by the attacker.
The code snippet 4.1 highlights the issue. It is evident that the JWT token does not contain any
expiration claim.

1 async getToken(): Promise<{ token: string }> {

2 const jwt = JWT.sign({ sub: 'backstage-server' }, this.signingKey, {

3 algorithm: 'HS256',

4 });

5

6 return { token: jwt };

7 }

Listing 4.1: JWT Token Generation without Expiration

4.1.1.3 Solution Advice

X41 recommends to put an expiration claim into the JWT such that access tokens expire. This
effectively prevents an attacker from impersonating the victim for an unlimited amount of time.

X41 D-Sec GmbH FOR PUBLICACTION Page 14 of 63

Penetration Test on Backstage for the Backstage team

4.1.2 SPBS-CR-22-02: Constant Subject Claim for JWT Access Token

Severity: HIGH
Remediation: NOT
CWE: None
Affected Component: packages/backend-common/src/tokens/ServerTokenManager.ts:get-

Token()

4.1.2.1 Remediation

This issue was not addressed, since there is currently no concept of different server identities.

4.1.2.2 Customer Response

“We have left this as a future feature to be implemented as we do not currently have
the concepts of multiple different server identities.”

4.1.2.3 Description

During a source code review of the backend-common package it was observed that the Server-
TokenManager.ts generates a JWT access token. This access token uses a constant subject claim.
Usually, services generate JWT access tokens after successful authentication of a user or another
service, and put an identifier of either the user or service into a so-called subject claim.
Having a subject claim as part of a token is vital to identify the caller of service actions. Here,
services which rely on the token generated by ServerTokenManager.ts can not identify the caller
in a secure way since all tokens show backstage-server as subject.
This, together with Finding 4.1.1, results in a constant token which is identical for all users and
services which use the ServerTokenManager.ts. If an attacker obtains such a JWT access token, the
attacker is able to impersonate all users and services which use ServerTokenManager.ts for JWT
token verification.
Code snippet 4.2 highlights the issue. Evidently, all tokens use the subject backstage-server.

1 async getToken(): Promise<{ token: string }> {

2 const jwt = JWT.sign({ sub: 'backstage-server' }, this.signingKey, {

3 algorithm: 'HS256',

4 });

X41 D-Sec GmbH FOR PUBLICACTION Page 15 of 63

Penetration Test on Backstage for the Backstage team

5

6 return { token: jwt };

7 }

Listing 4.2: JWT Token Generation

4.1.2.4 Solution Advice

X41 recommends to put an identifier of the authenticated user or service as subject claim of the
generated JWT access token.

X41 D-Sec GmbH FOR PUBLICACTION Page 16 of 63

Penetration Test on Backstage for the Backstage team

4.1.3 SPBS-CR-22-03: Missing Rate Limiting for Backend Components

Severity: LOW
Remediation: NOT
CWE: 799 – Improper Control of Interaction Frequency
Affected Component: plugins/*

4.1.3.1 Remediation

This was not resolved. The developers suggest that rate-limiting should be implemented by
adopters.

4.1.3.2 Customer Response

“Rate-limiting currently needs to be implemented by adopters if they need it, we do
not have it built-in.”

4.1.3.3 Description

The backend services do not implement any rate limiting or throttling mechanism.
This enables an attacker to run so-called DoS4 attacks on the backend services. Such attacks
either crash entire services, or disrupt legitimate users from being able to consume the services.
For illustration purposes, the code snippet 4.3 shows one endpoint within the plugins/scaffolder-
backend/src/service/router.ts without rate limiting in the scaffolder-backend plugin. The develop-
ers further clarified that there are no other protections with regards to rate limiting in place.

1 .get('/v2/actions', async (_req, res) => {

2 const actionsList = actionRegistry.list().map(action => {

3 return {

4 id: action.id,

5 description: action.description,

6 schema: action.schema,

7 };

8 });

9 res.json(actionsList);

10 })

4 Denial of Service

X41 D-Sec GmbH FOR PUBLICACTION Page 17 of 63

https://cwe.mitre.org/data/definitions/799.html

Penetration Test on Backstage for the Backstage team

Listing 4.3: Router Endpoint without Rate Limiting

4.1.3.4 Solution Advice

X41 recommends to implement rate limiting or throttling techniques for all endpoints to prevent
resource exhaustion and disruption of service for legitimate users.

X41 D-Sec GmbH FOR PUBLICACTION Page 18 of 63

Penetration Test on Backstage for the Backstage team

4.1.4 SPBS-CR-22-04: UnauthenticatedDoSSituationDue to Scaffolder Event
Streaming

Severity: MEDIUM
Remediation: NOT
CWE: 400 – Uncontrolled Resource Consumption (’Resource Exhaustion’)
Affected Component: plugins/scaffolder-backend/src/service/router.ts

4.1.4.1 Remediation

This was not resolved. The developers suggest that rate-limiting should be implemented by
adopters.

4.1.4.2 Customer Response

Please see the response for finding SPBS-CR-22-03 in subsection 4.1.3.2.

4.1.4.3 Description

The scaffolder-backend supports the streaming of events which occur during the execution of
tasks. For that purpose, a client provides the identifier for the task and the scaffolder-backend
streams events towards the client.
The client does not need to authenticate to consume the event stream and the scaffolder-backend
does not limit the number of concurrent event streams.
An attacker could leverage this and open many event streams at the same time without authen-
ticating to the backend. Each stream consumes resources, hence the attacker could exhaust the
resources on the scaffolder-backend, thereby resulting in aDoS situation. Code snippet 4.4 shows
the issue.

1 .get('/v2/tasks/:taskId/eventstream', async (req, res) => {

2 const { taskId } = req.params;

3 const after =

4 req.query.after !== undefined ? Number(req.query.after) : undefined;

5

6 logger.debug(`Event stream observing taskId '${taskId}' opened`);

7

8 // Mandatory headers and http status to keep connection open

X41 D-Sec GmbH FOR PUBLICACTION Page 19 of 63

https://cwe.mitre.org/data/definitions/400.html

Penetration Test on Backstage for the Backstage team

9 res.writeHead(200, {

10 Connection: 'keep-alive',

11 'Cache-Control': 'no-cache',

12 'Content-Type': 'text/event-stream',

13 });

14

15 // After client opens connection send all events as string

16 const subscription = taskBroker.event$({ taskId, after }).subscribe({

17 error: error => {

18 logger.error(

19 `Received error from event stream when observing taskId '${taskId}', ${error}`,

20);

21 },

22 next: ({ events }) => {

23 let shouldUnsubscribe = false;

24 for (const event of events) {

25 res.write(

26 `event: ${event.type}\ndata: ${JSON.stringify(event)}\n\n`,

27);

28 if (event.type === 'completion') {

29 shouldUnsubscribe = true;

30 }

31 }

32 // res.flush() is only available with the compression middleware

33 res.flush?.();

34 if (shouldUnsubscribe) subscription.unsubscribe();

35 },

36 });

37

38 // When client closes connection we update the clients list

39 // avoiding the disconnected one

40 req.on('close', () => {

41 subscription.unsubscribe();

42 logger.debug(`Event stream observing taskId '${taskId}' closed`);

43 });

44 })

Listing 4.4: Unbound Event Streaming

4.1.4.4 Solution Advice

X41 recommends to allow only authenticated users to access the event streaming and limit the
number of concurrent event streams. The scaffolder-backend should provide a task token in terms
of a JWT access token upon executing a new task, consequently checking this token on accessing
information regarding this task.

X41 D-Sec GmbH FOR PUBLICACTION Page 20 of 63

Penetration Test on Backstage for the Backstage team

4.1.5 SPBS-CR-22-05: Information Leakage throughMisconfiguration via Tem-
plates

Severity: LOW
Remediation: FULLY
CWE: 200 – Exposure of Sensitive Information to an Unauthorized Actor
Affected Component: plugins/scaffolder-backend/src/scaffolder/actions/builtin/fetch/helpers.ts

4.1.5.1 Remediation

This was resolved via pull request 120015, which limits the file templates to URL6 locations.

4.1.5.2 Description

During a source code review of the scaffolder-backend it was noticed that the backend offers so-
called actions. The scaffolder-backend executes these actions after loading the corresponding
template of the action. There are several built-in actions available, including also so-called fetch
actions. These actions use the plugins/scaffolder-backend/src/scaffolder/actions/builtin/fetch/helpers.ts
file, which copies files from the base directory of the template to a provided fetch directory (as
input). The function checks whether the fetch directory is a child of the template’s base directory,
and stops the execution of the action if this is not the case. The base directory of a template is
provided implicitly by the operator on registering new templates either in terms of its file location,
or as a URL.
If an operator places such templates in the root directory of the file system, all provided fetch
directories will be considered valid. This would allow an attacker to read from arbitrary file loca-
tions of the scaffolder-backend host, which could leak sensitive information. However, it needs
to be emphazied that it is really fully up to the operator fromwhere these templates are provided,
which tremendously lowers the chance of a successful exploitation.
Code Listing 4.5 shows the issue. The base directory, referred to also as baseUrl in the source
code, is used to resolve the source directory in a safe manner. If the base directory points to /,
arbitrary file system reads are possible.

1 if (!fetchUrlIsAbsolute && baseUrl?.startsWith('file://')) {

2 const basePath = baseUrl.slice('file://'.length);

3 const srcDir = resolveSafeChildPath(path.dirname(basePath), fetchUrl);

5 https://github.com/backstage/backstage/pull/120016 Uniform Resource Locator

X41 D-Sec GmbH FOR PUBLICACTION Page 21 of 63

https://cwe.mitre.org/data/definitions/200.html
https://github.com/backstage/backstage/pull/12001

Penetration Test on Backstage for the Backstage team

4 await fs.copy(srcDir, outputPath);

5 } else {

Listing 4.5: Arbitrary File Reads by Improper Templates File Placement

4.1.5.3 Solution Advice

X41 recommends to configure a path, or list of paths, under which all base directories must reside.

X41 D-Sec GmbH FOR PUBLICACTION Page 22 of 63

Penetration Test on Backstage for the Backstage team

4.1.6 SPBS-CR-22-06: Potential Information Leakage throughSymlinks inRepos-
itories

Severity: HIGH
Remediation: FULLY
CWE: 200 – Exposure of Sensitive Information to an Unauthorized Actor
Affected Component: plugins/scaffolder-backend/src/scaffolder/actions/builtin/publish/git-

hubPullRequest.ts, plugins/scaffolder-backend/src/scaffolder/actions/built-
in/publish/gitlabMergeRequest.ts

4.1.6.1 Remediation

The issue was addressed in pull request 125117 by verifying that a target file is not a symbolic link.
The way the check is implemented is not safe against race conditions, where a local attacker with
file system level privileges on the file being verified could try to replace the filewith a symbolic link
after the check was passed, but before usage happens (TOCTOU8). Assuming that the process
doing the verification is running as a dedicated, trustworthy user, the mitigation can be assumed
to be working and the issue thus fully mitigated.

4.1.6.2 Description

The backend provides built-in actions for GitHub Pull Requests and GitLabMerge Requests. Both
actions read the file contents from a repository into memory. The GitHub Pull Request creates a
ZIP archive from the file contents whereas the GitLab Merge Request pushes an action into a list
for each file.
Git repositories allow for the use of symlinks inside repositories. Specifically, given that the sym-
link destination file exists on the host, Git preserves the symlink via the repository. Neither im-
plementation checks whether a file of a repository symlinks to a file outside of the repository or
workspace directory.
This allows an attacker who is able to provide symlinks in a repository to obtain sensitive infor-
mation from the host file system of the scaffolder-backend as part of a ZIP archive (for GitHub
Pull Requests) or by reading out the destination of actions (for GitLab Merge Requests).
Code Listing 4.6 shows the issue for GitHub Pull Requests. The file contents from symlinked files

7 https://github.com/backstage/backstage/pull/12511/commits/5185c58bf5461933f4ab1ef628e4637c99f
183708 Time-of-check to time-of-use

X41 D-Sec GmbH FOR PUBLICACTION Page 23 of 63

https://cwe.mitre.org/data/definitions/200.html
https://github.com/backstage/backstage/pull/12511/commits/5185c58bf5461933f4ab1ef628e4637c99f18370
https://github.com/backstage/backstage/pull/12511/commits/5185c58bf5461933f4ab1ef628e4637c99f18370

Penetration Test on Backstage for the Backstage team

end up in a ZIP archive.
1 const fileRoot = sourcePath

2 ? resolveSafeChildPath(ctx.workspacePath, sourcePath)

3 : ctx.workspacePath;

4

5 const localFilePaths = await globby(['./**', './**/.*', '!.git'], {

6 cwd: fileRoot,

7 gitignore: true,

8 dot: true,

9 });

10

11 const fileContents = await Promise.all(

12 localFilePaths.map(filePath => {

13 const absPath = resolveSafeChildPath(fileRoot, filePath);

14 const base64EncodedContent = fs

15 .readFileSync(absPath)

16 .toString('base64');

17 [...]

18 const encoding: Encoding = 'base64';

19 return {

20 encoding: encoding,

21 content: base64EncodedContent,

22 mode: githubTreeItemMode,

23 };

24 }),

25);

26

27 const repoFilePaths = localFilePaths.map(repoFilePath => {

28 return targetPath ? `${targetPath}/${repoFilePath}` : repoFilePath;

29 });

30

31 const changes = [

32 {

33 files: zipObject(repoFilePaths, fileContents),

34 commit: title,

35 },

36];

Listing 4.6: Potential Information Leakage through GitHub Pull Request Action

Code Listing 4.7 shows the issue for GitLab Merge Requests. It is evident that the file contents
from symlinked files end up in the actions list of the GitLab Merge Request.

1 const fileRoot = ctx.workspacePath;

2 const localFilePaths = await globby([`${ctx.input.targetPath}/**`], {

3 cwd: fileRoot,

X41 D-Sec GmbH FOR PUBLICACTION Page 24 of 63

Penetration Test on Backstage for the Backstage team

4 gitignore: true,

5 dot: true,

6 });

7

8 const fileContents = await Promise.all(

9 localFilePaths.map(p => readFile(resolveSafeChildPath(fileRoot, p))),

10);

11

12 const repoFilePaths = localFilePaths.map(repoFilePath => {

13 return repoFilePath;

14 });

15

16 for (let i = 0; i < repoFilePaths.length; i++) {

17 actions.push({

18 action: 'create',

19 filePath: repoFilePaths[i],

20 content: fileContents[i].toString(),

21 });

22 }

Listing 4.7: Potential Information Leakage through GitLab Merge Request Action

4.1.6.3 Solution Advice

X41 recommends to disable symlinks which point outside repositories.

X41 D-Sec GmbH FOR PUBLICACTION Page 25 of 63

Penetration Test on Backstage for the Backstage team

4.1.7 SPBS-CR-22-08: DoS Situation for catalog-backend Through Processing
Faulty Locations and Entities

Severity: MEDIUM
Remediation: NOT
CWE: 400 – Uncontrolled Resource Consumption (’Resource Exhaustion’)
Affected Component: plugins/catalog-backend/src/processing/DefaultCatalogPro-

cessingEngine.ts

4.1.7.1 Remediation

This issue was not resolved as it is intended behavior. For the future it is planned to add more
observability that allows for monitoring of catalog processing latency.

4.1.7.2 Customer Response

“This is the intended behavior of the catalog. We will likely add observability for this
case in the future though, so that it can be detected more easily. There are already
metrics for keeping an eye on the catalog processing latency.”

4.1.7.3 Description

The catalog-backend processes location specs in the DefaultCatalogProcessingEngine.ts file. For
that purpose it provides a loadTask() callback which loads only a defined number of unprocessed
entities in one go. After loading them, the DefaultCatalogProcessingEngine.ts file processes the
entities. It does not, however, delete entities from the database which lead to errors or are mal-
formed.
This allows an attacker who has access to the catalog-backend and is able to specify faulty enti-
ties or faulty locations to bring the catalog-backend into a DoS situation. An attacker could add
locations containing faulty entities, which would pile up in the catalog-backend due to a miss-
ing delete functionality on processing them. Consequently, as also confirmed by the developers,
the catalog-backend will continue to try to process the faulty entities, which essentially blocks
legitimate locations and entities from being processed.
Code Listing 4.8 shows the issue. It is evident that faulty entities stay within the catalog-backend
and are not deleted by the backend.

X41 D-Sec GmbH FOR PUBLICACTION Page 26 of 63

https://cwe.mitre.org/data/definitions/400.html

Penetration Test on Backstage for the Backstage team

1 if (!result.ok) {

2 await this.processingDatabase.transaction(async tx => {

3 await this.processingDatabase.updateProcessedEntityErrors(tx, {

4 id,

5 errors: errorsString,

6 resultHash,

7 });

8 });

9 await this.stitcher.stitch(

10 new Set([stringifyEntityRef(unprocessedEntity)]),

11);

12 track.markSuccessfulWithErrors();

13 return;

14 }

Listing 4.8: Faulty Entities Do Not Get Deleted from the Database.

4.1.7.4 Solution Advice

X41 recommends to delete faulty entities from the database.

X41 D-Sec GmbH FOR PUBLICACTION Page 27 of 63

Penetration Test on Backstage for the Backstage team

4.1.8 SPBS-CR-22-09: Authentication of Unknown Users in Auth-Backend

Severity: CRITICAL
Remediation: FULLY
CWE: 303 – Incorrect Implementation of Authentication Algorithm
Affected Component: plugins/auth-backend/src/providers/*

4.1.8.1 Remediation

This was addressed in pull request 103009 with additional adjustments to the documentation in
1190110. This resolves this issue.

4.1.8.2 Description

The auth-backend acts as a wrapper for the authentication methods which backstage supports.
Backstage allows the following authentication providers:

1. atlassian
2. auth0
3. aws-alb
4. bitbucket
5. gcp-iap
6. github
7. gitlab
8. google
9. microsoft

10. oauth2
11. oauth2-proxy
12. oidc
9 https://github.com/backstage/backstage/pull/1030010 https://github.com/backstage/backstage/pull/11901

X41 D-Sec GmbH FOR PUBLICACTION Page 28 of 63

https://cwe.mitre.org/data/definitions/303.html
https://github.com/backstage/backstage/pull/10300
https://github.com/backstage/backstage/pull/11901

Penetration Test on Backstage for the Backstage team

13. okta
14. onelogin
15. saml

Most of them have a so-called defaultSignInResolver which converts from a user’s authentication
result of a provider to a Backstage identity. Those defaultSignInResolvers, however, do not check
whether the corresponding user of the authentication exists within the Backstage ecosystem or
not.
This allows an attacker who is registered on one of the supported authentication platforms to
sign in to the auth-backend even though Backstage does not know the user.
Code Listing 4.9 shows the issue for the Auth0 authentication provider. It is evident from this
listing that this provider does not check whether the successfully authenticated user exists in
the Backstage ecosystem or not. Similar functions exist also for most of the other authentication
providers.

1 const defaultSignInResolver: SignInResolver<OAuthResult> = async info => {

2 const { profile } = info;

3

4 if (!profile.email) {

5 throw new Error('Profile does not contain an email');

6 }

7

8 const id = profile.email.split('@')[0];

9

10 return { id, token: '' };

11 };

Listing 4.9: Default Sign-In Resolver for the Auth0 Provider

4.1.8.3 Solution Advice

X41 recommends to always ensure that successfully authenticated users exist in the Backstage
ecosystem.

X41 D-Sec GmbH FOR PUBLICACTION Page 29 of 63

Penetration Test on Backstage for the Backstage team

4.1.9 SPBS-CR-22-10: Account Hijacking Due to Support of Multiple Authen-
tication Providers

Severity: CRITICAL
Remediation: FULLY
CWE: 287 – Improper Authentication
Affected Component: plugins/auth-backend/src/providers/*

4.1.9.1 Remediation

This was addressed in pull request 1030011 with additional adjustments to the documentation in
1190112. This resolves this issue.

4.1.9.2 Description

The auth-backend acts as a wrapper for the authentication methods which backstage supports.
Backstage allows the following authentication providers:

1. atlassian
2. auth0
3. aws-alb
4. bitbucket
5. gcp-iap
6. github
7. gitlab
8. google
9. microsoft

10. oauth2
11. oauth2-proxy
12. oidc
11 https://github.com/backstage/backstage/pull/1030012 https://github.com/backstage/backstage/pull/11901

X41 D-Sec GmbH FOR PUBLICACTION Page 30 of 63

https://cwe.mitre.org/data/definitions/287.html
https://github.com/backstage/backstage/pull/10300
https://github.com/backstage/backstage/pull/11901

Penetration Test on Backstage for the Backstage team

13. okta
14. onelogin
15. saml

The auth-backend defers the authentication of a user to these external providers. After successful
authentication the auth-backend associates a backstage identity with the user by extracting the
username from the email address of the credentials. Furthermore, the auth-backend does not
keep track of allowed authentication providers for users or organizations but rather enables users
to use all of the aforementioned providers.
This enables an attacker to mount several kinds of attacks, including the following:

• In case the victim of the attacker does not have an account on one of the supported authen-
tication providers, an attacker could create an email address with the name of the email
address matching the victims username and sign-in as the victim to Backstage.

• In case the victim does have accounts within several supported authentication providers, it
suffices for the attacker to hijack one of them to impersonate the victim within the Back-
stage ecosystem.

Code Listing 4.10 shows the extraction of the backstage identity from the result of a successful
authentication of a user for the Auth0 authentication provider. It is obvious that the auth-backend
extracts the user identity for Backstage from the email address of the user presented on authen-
tication. Further, the auth-backend does not check whether the user identified by the name
extracted from the local part of the email address is allowed to use this authentication provider
or not.

1 const defaultSignInResolver: SignInResolver<OAuthResult> = async info => {

2 const { profile } = info;

3

4 if (!profile.email) {

5 throw new Error('Profile does not contain an email');

6 }

7

8 const id = profile.email.split('@')[0];

9

10 return { id, token: '' };

11 };

Listing 4.10: Extraction of the Backstage Identity From the Users Email Address

X41 D-Sec GmbH FOR PUBLICACTION Page 31 of 63

Penetration Test on Backstage for the Backstage team

4.1.9.3 Solution Advice

X41 recommends to implement an allow-list approach for authentication providers at the level
of organizations, but also at the level of individual users. Furthermore, the auth-backend should
use the full email address used for authentication as the identity of a Backstage user.

X41 D-Sec GmbH FOR PUBLICACTION Page 32 of 63

Penetration Test on Backstage for the Backstage team

4.1.10 SPBS-CR-22-11: Execution of Arbitrary Docker Images in Scaffolder

Severity: MEDIUM
Remediation: FULLY
CWE: None
Affected Component: plugins/scaffolder-backend-module-rails/src/actions/fetch/rails/rails-

NewRunner.ts

4.1.10.1 Remediation

This was addressed in pull request 1125413, which verifies the supplied image name against an
allow-list.

4.1.10.2 Description

The scaffolder-backend indirectly supports, via amodule for Rails, the execution ofDocker images.
In this particular case, the scaffolder-backend uses the rails command for Ruby on Rails appli-
cations. In case the rails command is not available on the scaffolder-backend host, the plugin
executes the rails command inside a Docker container. For that purpose, the implementation
requires an image name to identify the Docker image which needs to be run. The scaffolder-
backend module for Rails does not verify the provided image name.
This enables an attacker to who is able to invoke this action to provide arbitrary image names
to the rails module of the scaffolder-backend. This in turn allows for the execution of arbitrary
Docker containers on the scaffolder-backend.
Code Listing 4.11 shows the issue. It is evident that the function does not check the image name
against an allowed list of images.

1 public async run({

2 workspacePath,

3 values,

4 logStream,

5 }: {

6 workspacePath: string;

7 values: JsonObject;

8 logStream: Writable;

9 }): Promise<void> {

10 const intermediateDir = path.join(workspacePath, 'intermediate');

13 https://github.com/backstage/backstage/pull/11254

X41 D-Sec GmbH FOR PUBLICACTION Page 33 of 63

https://github.com/backstage/backstage/pull/11254

Penetration Test on Backstage for the Backstage team

11 await fs.ensureDir(intermediateDir);

12 const resultDir = path.join(workspacePath, 'result');

13

14 const { name, imageName, railsArguments } = values;

15 [...]

16 const baseCommand = 'rails';

17 const baseArguments = ['new'];

18 const commandExistsToRun = await commandExists(baseCommand);

19

20 if (commandExistsToRun) {

21 [...]

22 } else {

23 const arrayExtraArguments = railsArgumentResolver(

24 '/input',

25 railsArguments as RailsRunOptions,

26 true,

27);

28 await this.containerRunner.runContainer({

29 imageName: imageName as string,

30 command: baseCommand,

31 args: [...baseArguments, `/output/${name}`, ...arrayExtraArguments],

32 mountDirs,

33 workingDir: '/input',

34 // Set the home directory inside the container as something that applications can

35 // write to, otherwise they will just fail trying to write to /

36 envVars: { HOME: '/tmp' },

37 logStream,

38 });

39 }

40 [...]

41 }

Listing 4.11: Execution of Arbitrary Docker Containers

4.1.10.3 Solution Advice

X41 recommends to follow an allow-list approach of images to be executed as part of the rails
module for the scaffolder-backend.

X41 D-Sec GmbH FOR PUBLICACTION Page 34 of 63

Penetration Test on Backstage for the Backstage team

4.1.11 SPBS-CR-22-12: Arbitrary Writes to File System of techdocs-backend

Severity: MEDIUM
Remediation: FULLY
CWE: None
Affected Component: packages/techdocs-common/src/stages/publish/local.ts

4.1.11.1 Remediation

This was resolved in commit 5296b0014, which safely resolves the paths.

4.1.11.2 Description

The techdocs-backend implements a build process to create techdocs by using mkdocs build.
For that purpose the techdocs-backend follows a three step process, comprised of the prepare,
generate and publish steps. Backstage supports several different publish actions, one of them
being a local action. The local publish action copies the output of the generate step to the
local file system of the techdocs-backend. The destination path of this copy is compiled from the
namespace, the kind and the name of the techdoc, without sanitizing the individual parts from
characters like ‘..’ or ‘/’. Further, it shall be noted that the local publish action is the default
publish action.
This allows an attacker who is able to create techdocs to provide crafted values for namespace,
kind and name to write the output of the generate techdocs build step to arbitrary file locations.
Code Listing 4.12 shows the issue. It is evident that the local publish action does not escape or
sanitize the individual parts comprising the final path.

1 protected staticEntityPathJoin(...allParts: string[]): string {

2 if (this.legacyPathCasing) {

3 const [namespace, kind, name, ...parts] = allParts;

4 return path.join(staticDocsDir, namespace, kind, name, ...parts);

5 }

6 const [namespace, kind, name, ...parts] = allParts;

7 return path.join(

8 staticDocsDir,

9 namespace.toLowerCase(),

10 kind.toLowerCase(),

11 name.toLowerCase(),

12 ...parts,

14 https://github.com/backstage/backstage/commit/5296b00d4a8c7b7079ccb11b27eb1376e40b8125

X41 D-Sec GmbH FOR PUBLICACTION Page 35 of 63

https://github.com/backstage/backstage/commit/5296b00d4a8c7b7079ccb11b27eb1376e40b8125

Penetration Test on Backstage for the Backstage team

13);

14 }

Listing 4.12: Path Compilation for the Destination Directory of Techdoc Publish

4.1.11.3 Solution Advice

X41 recommends to check and sanitize the values of namespace, kind and name of a techdoc
before compiling the destination path of the local publish action.

X41 D-Sec GmbH FOR PUBLICACTION Page 36 of 63

Penetration Test on Backstage for the Backstage team

4.1.12 SPBS-CR-22-13: DoS Situation Due to multiple Techdoc Builds

Severity: LOW
Remediation: FULLY
CWE: 400 – Uncontrolled Resource Consumption (’Resource Exhaustion’)
Affected Component: packages/backend-common/src/util/DockerContainerRunner.ts

4.1.12.1 Remediation

The number of techdoc builds was limited to a default of 10 concurrent builds at the same time
in pull request 1181615. This resolves the issue.

4.1.12.2 Description

The techdocs-backend implements a build process to create techdocs by using mkdocs build.
For that purpose the techdocs-backend follows a three step process, comprised of a prepare,
generate and publish step. For the generate step two options are available: local execution of
the mkdocs build command on the host of the techdocs-backend, or via a dedicated Docker
container running the mkdocs build command. The latter is done by using the spotify/techdocs
image from Docker Hub, which has a size of roughly 460MB. When using Docker containers for
techdoc builds, the techdocs-backend spawns a new Docker container for each build process
from the spotify/techdocs image. The number of concurrent techdoc builds is not upper bounded
and thereby vulnerable to resource exhaustion, due to too many Docker containers running at
the same time.
This allows an attacker who is able to trigger techdoc builds in the techdocs-backend to run a DoS
attack by requesting multiple techdoc builds at the same time. The techdocs-backend spawns a
new Docker container for each build request, thereby consuming all the memory of the host.
Code Listing 4.13 shows the issue. The number of concurrent Docker containers is not upper
bounded.

1 async runContainer(options: RunContainerOptions) {

2 const {

3 imageName,

4 command,

5 args,

6 logStream = new PassThrough(),

15 https://github.com/backstage/backstage/pull/11816

X41 D-Sec GmbH FOR PUBLICACTION Page 37 of 63

https://cwe.mitre.org/data/definitions/400.html
https://github.com/backstage/backstage/pull/11816

Penetration Test on Backstage for the Backstage team

7 mountDirs = {},

8 workingDir,

9 envVars = {},

10 pullImage = true,

11 } = options;

12 [...]

13 const [{ Error: error, StatusCode: statusCode }] =

14 await this.dockerClient.run(imageName, args, logStream, {

15 Volumes,

16 HostConfig: {

17 AutoRemove: true,

18 Binds,

19 },

20 ...(workingDir ? { WorkingDir: workingDir } : {}),

21 Entrypoint: command,

22 Env,

23 ...userOptions,

24 } as Docker.ContainerCreateOptions);

25 [...]

26 }

Listing 4.13: The Number of Docker Containers Running is Unbounded.

4.1.12.3 Solution Advice

X41 recommends to limit the number of concurrent techdoc build processes on the techdocs-
backend.

X41 D-Sec GmbH FOR PUBLICACTION Page 38 of 63

Penetration Test on Backstage for the Backstage team

4.2 Side Findings

The following observations do not have a direct security impact, but are related to security harden-
ing, affect functionality, or other topics that are not directly related to security. X41 recommends
to mitigate these issues as well, because they often become exploitable in the future. Doing so
will strengthen the security of the system and is recommended for defense in depth.

4.2.1 SPBS-CR-22-100: Log Injection

Affected Component: WebSocket Endpoint Logging
Remediation: NOT

4.2.1.1 Remediation

Thiswill be addressed in the future, but is deemed lowpriority since the production servers usually
use JSON16 output where this issue does not occur.

4.2.1.2 Customer Response

“In the production configuration we use JSON formatted log output, which escapes
appropriately. This is not enabled by default in our Dockerfiles, so we’ll fix that.”

4.2.1.3 Description

The WebSocket endpoint on TCP17 port 7007 logs data about incoming requests to stdout with-
out further escaping the variables provided.

1 GET /api/catalog/entities?a="<--bad HTTP/1.1

2 Host: localhost:7007

3 Accept-Encoding: gzip, deflate

4 Accept: */*

5 Accept-Language: en

6 User-Agent: in" jec" tion"

7 Connection: close

16 JavaScript Object Notation17 Transmission Control Protocol

X41 D-Sec GmbH FOR PUBLICACTION Page 39 of 63

Penetration Test on Backstage for the Backstage team

Listing 4.14: Request to TCP 7007

The output is separated by spaceswith some sections being quoted. TheURI18 component allows
quotes to be sent into the log whereas the user-agent HTTP19 header allows both quotes and
spaces to be injected.

1 [1] 2022-03-04T07:46:28.394Z backstage info ::ffff:127.0.0.1 - - [04/Mar/2022:07:46:28 +0000]

"GET /api/catalog/entities?a="<--bad HTTP/1.1" 200 - "-" "in" jec" tion"" type=incomingRequest↪→

Listing 4.15: Log Output for Injection Request

This might confuse parsers handling the logging data and could potentially be abused by attackers.

4.2.1.4 Solution Advice

X41 suggests to escape characters that are used in the output format structure.

18 Uniform Resource Identifier19 HyperText Transfer Protocol

X41 D-Sec GmbH FOR PUBLICACTION Page 40 of 63

Penetration Test on Backstage for the Backstage team

4.2.2 SPBS-CR-22-101: Missing Archive Validation Leads to Potential Remote
Code Execution

Affected Component: backend-common
Remediation: FULLY

4.2.2.1 Remediation

This is handled by the libraries and mitigted in-depth by pull request 1305420.

4.2.2.2 Description

The backend-common repository implements read tree response readerswithin the folder packages/backend-
common/src/reading/tree. The purpose of the implementation in this folder is to unpack the re-
sponse of a trusted repository provider. The formats which the source code currently supports
are ZIP, tar and so-called readable arrays. The ZIP format was known to be vulnerable to so-
called ZIP-Slip attacks, in which an attacker provides a crafted ZIP file containing file entries like
../../evil.sh, which allow an attacker to escape from the directory that is the target of the unzip
operation.
The unzipper package used to perform the unzip operation for the source code in-scope uses a ver-
sion in which this vulnerability is fixed. TAR archives are also known to be vulnerable to this kind
of attack and it seems that this vulnerability has not been closed yet in packages. Furthermore,
the readable array response implementation, as shown in Code Snippet 4.16 by showing parts
of packages/backend-common/src/reading/tree/ReadableArrayResponse.ts, also does not properly
validate the provided paths. This in turn allows an attacker to escape from the current directory,
and perform writes outside of the target directory. If the archives contain scripts, this can lead to
remote code execution.
Since all providers at the moment are trusted, the complexity of such an attack is high. In case the
functionality is used together with untrusted source providers in the future, the attack complexity
would drop, accordingly.

1 async dir(options?: ReadTreeResponseDirOptions): Promise<string> {

2 this.onlyOnce();

3

4 const dir =

5 options?.targetDir ??

20 https://github.com/backstage/backstage/pull/13054

X41 D-Sec GmbH FOR PUBLICACTION Page 41 of 63

https://github.com/backstage/backstage/pull/13054

Penetration Test on Backstage for the Backstage team

6 (await fs.mkdtemp(platformPath.join(this.workDir, 'backstage-')));

7

8 for (let i = 0; i < this.stream.length; i++) {

9 if (!this.stream[i].path.endsWith('/')) {

10 await pipeline(

11 this.stream[i].data,

12 fs.createWriteStream(

13 platformPath.join(dir, basename(this.stream[i].path)),

14),

15);

16 }

17 }

18

19 return dir;

20 }

Listing 4.16: Log Output for Injection Request

4.2.2.3 Solution Advice

X41 suggests to sanitize all paths before writing to the file system.

X41 D-Sec GmbH FOR PUBLICACTION Page 42 of 63

Penetration Test on Backstage for the Backstage team

4.2.3 SPBS-CR-22-102: Copying of Workspace to Arbitrary File System Loca-
tions

Affected Component: scaffolder-backend
Remediation: NOT

4.2.3.1 Remediation

This issue is not resolved. The feature will be deprecated and removed in the near future.

4.2.3.2 Customer Response

“This action is only used for local development and is not installed by default. We will
however deprecate and remove the actions to avoid any risk, as there are now other
more convenient options to use instead.”

4.2.3.3 Description

The file backstage-0.70.0/plugins/scaffolder-backend/src/scaffolder/actions/builtin/publish/file.ts, which
is part of the built-in publish actions, allows to copy the content of a workspace to arbitrary new
file system locations. It needs to be emphasized that these actions are not installed by default
and also the documentation warns the user about the security implications on using it.
However, an attacker who can trigger this action is able to copy the content of workspaces to
arbitrary, new locations within the file system of the scaffolder-backend. Listing 4.17 shows the
issue.

1 async handler(ctx) {

2 const { path } = ctx.input;

3

4 const exists = await fs.pathExists(path);

5 if (exists) {

6 throw new InputError('Output path already exists');

7 }

8 await fs.ensureDir(dirname(path));

9 await fs.copy(ctx.workspacePath, path);

10 },

Listing 4.17: Unverified Path Used

X41 D-Sec GmbH FOR PUBLICACTION Page 43 of 63

Penetration Test on Backstage for the Backstage team

4.2.3.4 Solution Advice

X41 suggests to check that the provided path is a child path of the templates base directory before
copying the entire workspace content.

X41 D-Sec GmbH FOR PUBLICACTION Page 44 of 63

Penetration Test on Backstage for the Backstage team

4.2.4 SPBS-CR-22-103: No Authentication Required for scaffolder-backend

Affected Component: scaffolder-backend
Remediation: NOT

4.2.4.1 Remediation

This issue is not resolved.

4.2.4.2 Customer Response

“This applies to all backend endpoints and fixing this will be part of a bigger milestone
to add auth across all endpoints.”

4.2.4.3 Description

During a review of the scaffolder-backend repository it was noticed that the backend offers sev-
eral API endpoints. Most of them do not require any authentication. Specifically, the following
endpoints do not require any authentication:

• GET /v2/actions

• GET /v2/tasks/:taskId

• GET /v2/tasks/:taskId/eventstream

• GET /v2/tasks/:taskId/events

Endpoints without authentication are visible and reachable by everyone. Therefore, if the end-
points provide sensitive information about task execution, or even secrets, an attacker could ac-
quire such information easily.

4.2.4.4 Solution Advice

X41 suggests to protect all endpoints with authentication. This issue can not fully be resolved by
firewalling, since it could still be abused with attacks such as SSRF21.
21 Server-Side Request Forgery

X41 D-Sec GmbH FOR PUBLICACTION Page 45 of 63

Penetration Test on Backstage for the Backstage team

4.2.5 SPBS-CR-22-104: Wrong Age Check for Server Certificate

Affected Component: packages/backend-common/src/service/lib/hostFactory.ts
Remediation: NOT

4.2.5.1 Remediation

This issue is not resolved but will be addressed in the future.

4.2.5.2 Customer Response

“Will be creating an issue for this on GitHub, as it’s something that might just lead to
inconvenience in local development.”

4.2.5.3 Description

The hostFactory.ts file reads a certificate from the file system. Certificates have a well-defined
structure, including a field indicating the expiry date of a certificate.
However, the current implementation does not evaluate this expiry date, but rather uses local
file properties to determine whether the certificate is expired or not. Therefore, it is possible
that an expired certificate gets mistakenly loaded and used, which would lead clients to abort
connections due to an expired certificate.
Code listing 4.18 shows the issue. It is evident from the snippet that the file uses file properties
to determine whether the certificate should be read or not.

1 let cert = undefined;

2 if (await fs.pathExists(certPath)) {

3 const stat = await fs.stat(certPath);

4 const ageMs = Date.now() - stat.ctimeMs;

5 if (stat.isFile() && ageMs < ALMOST_MONTH_IN_MS) {

6 cert = await fs.readFile(certPath);

7 }

8 }

Listing 4.18: Certificate Expiry Check

X41 D-Sec GmbH FOR PUBLICACTION Page 46 of 63

Penetration Test on Backstage for the Backstage team

4.2.5.4 Solution Advice

X41 recommends to always read the certificate file data and check the expiration date provided
by the certificate.

X41 D-Sec GmbH FOR PUBLICACTION Page 47 of 63

Penetration Test on Backstage for the Backstage team

4.2.6 SPBS-CR-22-105: No Check Whether File for Location Spec Exists on
Adding Them

Affected Component: plugins/catalog-backend/src/modules/core/DefaultLocationStore.ts
Remediation: FULLY

4.2.6.1 Remediation

This issue was resolved by pull request 1200122.

4.2.6.2 Description

The DefaultLocationStore.ts file stores new location specs of the catalog backend to the database.
There are different types of location specs which the backend supports, also including a file lo-
cation spec. The code in the file DefaultLocationStore.ts does not check for file location specs
whether the file exists or not. This in turn allows to add file specs pointing at files which do not
exist.
Code listing 4.19 shows the issue. It is clear that the code in the DefaultLocationStore.ts file does
not verify whether a file exists for file location specs.

1 async createLocation(input: LocationInput): Promise<Location> {

2 const location = await this.db.transaction(async tx => {

3 // Attempt to find a previous location matching the input

4 const previousLocations = await this.locations(tx);

5 // TODO: when location id's are a compilation of input target we can remove this full

6 // lookup of locations first and just grab the by that instead.

7 const previousLocation = previousLocations.some(

8 l => input.type === l.type && input.target === l.target,

9);

10 if (previousLocation) {

11 throw new ConflictError(

12 `Location ${input.type}:${input.target} already exists`,

13);

14 }

15

16 const inner: DbLocationsRow = {

17 id: uuid(),

18 type: input.type,

19 target: input.target,

20 };

22 https://github.com/backstage/backstage/pull/12001

X41 D-Sec GmbH FOR PUBLICACTION Page 48 of 63

https://github.com/backstage/backstage/pull/12001

Penetration Test on Backstage for the Backstage team

21

22 await tx<DbLocationsRow>('locations').insert(inner);

23

24 return inner;

25 });

26 const entity = locationSpecToLocationEntity(location);

27 await this.connection.applyMutation({

28 type: 'delta',

29 added: [{ entity, locationKey: getEntityLocationRef(entity) }],

30 removed: [],

31 });

32

33 return location;

34 }

Listing 4.19: Missing File Exists Check

4.2.6.3 Solution Advice

X41 recommends to verify for location specs of type file whether the file exists. In case the file
does not exist, adding the location spec should fail.

X41 D-Sec GmbH FOR PUBLICACTION Page 49 of 63

Penetration Test on Backstage for the Backstage team

4.2.7 SPBS-CR-22-106: Yarn Installation Instructions Deprecated

Affected Component: https://backstage.io/docs/getting-started/
Remediation: NOT

4.2.7.1 Remediation

This issue does not seem to be resolved.

4.2.7.2 Customer Response

“These are the installation instructions for the yarn version that we use so they need
to stay. We are in the process of moving to a more recent version though.”

4.2.7.3 Description

TheGetting Started page links to https://classic.yarnpkg.com/en/docs/installwhich shows
a warning that this install method, for Yarn version 1, is not the latest version anymore as of Jan-
uary 2020 and that support will end at some undefined time. It is not stated how much warning
time would be provided once this ‘maintenance mode’ period ends.

4.2.7.4 Solution Advice

X41 recommends to update the link to the latest installation instructions to ensure stable support
for the installed version.

X41 D-Sec GmbH FOR PUBLICACTION Page 50 of 63

https://classic.yarnpkg.com/en/docs/install

Penetration Test on Backstage for the Backstage team

4.2.8 SPBS-CR-22-107: nvm Installation Unverified

Affected Component: https://backstage.io/docs/getting-started/
Remediation: NOT

4.2.8.1 Remediation

This issue does not seem to be resolved.

4.2.8.2 Customer Response

“[We] strongly prefer NVM over binary installations of Node.js, since the binary in-
stallation does not set up proper file system permissions for executable files, leading
to risky use of sudo. The installation procedure for NVM is in our opinion worth the
tradeoff, and the installation instructions do hint and downloading the script instead
too.”

4.2.8.3 Description

The Getting Started page links to https://github.com/nvm-sh/nvm#install--update-script
as the preferred method of installing nvm to get a Node.js Active LTS23 release. Users are in-
structed to pipe curl output from https://raw.githubusercontent.com/ into bash. This cre-
ates an implicit dependency on GitHub (Microsoft), who can modify the contents of this down-
load generally, for curl user agents, or for specific targets. There are no checks to ensure that
the executed code originates from the nvm developers.
Docker has a similar installation procedure, though using a download at docker.com. Ideally,
something like a PGP24 signature would be added so at least the more vigilant users could notice
if the domain was compromised, but serving an installation script from one’s own servers is a step
up from directly depending on third-party hosting.

4.2.8.4 Solution Advice

X41 recommends to instead recommend the binary download method already mentioned on the
Getting Started page. Alternatively, users could be made aware of the fact that nvm release tags
23 Long Term Support24 Pretty Good Privacy

X41 D-Sec GmbH FOR PUBLICACTION Page 51 of 63

https://github.com/nvm-sh/nvm#install--update-script
https://raw.githubusercontent.com/

Penetration Test on Backstage for the Backstage team

are signed. In that case, the git install 25 should be used instead of the install script.

25 https://github.com/nvm-sh/nvm#git-install

X41 D-Sec GmbH FOR PUBLICACTION Page 52 of 63

https://github.com/nvm-sh/nvm#git-install

Penetration Test on Backstage for the Backstage team

4.2.9 SPBS-CR-22-108: Use of Privileged Docker User

Affected Component: backstage/packages/backend-common/src/util/DockerContainer-
Runner.ts

Remediation: NOT

4.2.9.1 Remediation

The risk was accepted with the following developer comment:

4.2.9.2 Customer Response

“Our understanding is that the code improves security, as we avoid running as the
root user.”

4.2.9.3 Description

The comment listed in listing 4.20 mentions that, since root is needed for the used configura-
tion on Mac systems, it is also used in Linux. So a limitation found predominantly on developer
machines (Mac) leads to a decrease in security hardening on production systems (Linux).

1 // Files that are created inside the Docker container will be owned by

2 // root on the host system on non Mac systems, because of reasons. Mainly the fact that

3 // volume sharing is done using NFS on Mac and actual mounts in Linux world.

4 // So we set the user in the container as the same user and group id as the host.

5 // On Windows we don't have process.getuid nor process.getgid

Listing 4.20: Use of Privileged Docker User

4.2.9.4 Solution Advice

X41 recommends to not relax security hardening for production systems.

X41 D-Sec GmbH FOR PUBLICACTION Page 53 of 63

Penetration Test on Backstage for the Backstage team

4.2.10 SPBS-CR-22-109: Docker Best Practices Not Applied

Affected Component: Docker
Remediation: NOT

4.2.10.1 Remediation

This issue does not seem to be resolved. But best practices will be applied in the future.

4.2.10.2 Customer Response

“We will try to update these.”

4.2.10.3 Description

The provided Dockerfiles violate some best practices, listed below:
• contrib/docker/cookiecutter-with-jinja2-extensions/Dockerfile

– missing USER directive
• contrib/docker/kubernetes-example-backend/Dockerfile

– missing USER directive
– Python is installed using curl, without any signature verification

• contrib/docker/devops/Dockerfile

– missing USER directive

4.2.10.4 Solution Advice

X41 recommends to make use of the USER directive and to install packages using the distribu-
tion’s package manager whenever possible.

X41 D-Sec GmbH FOR PUBLICACTION Page 54 of 63

Penetration Test on Backstage for the Backstage team

4.2.11 SPBS-CR-22-110: Expired Public Key Cleanup Only on Listing Public
Keys

Affected Component: plugins/auth-backend/src/identity/TokenFactory.ts
Remediation: NOT

4.2.11.1 Remediation

This issue does not seem to be resolved.

4.2.11.2 Customer Response

“We do not list keys when generating new ones, so pruning keys during generation
would introduce additional latency and/or complexity so this does not seem to be
worth the tradeoff. The risk of filling up storage here seems minimal as the keys are
very small and generated quite rarely.”

4.2.11.3 Description

The auth-backend contains the file TokenFactory.ts, which is responsible for generating new to-
kens. For that purpose, the implementation loads the signing key from a keyStore, and utilizes
the key to sign a new token. Such keys have a short lifetime, and the TokenFactory.ts file rotates
the key after a configurable time period.
However, the TokenFactory.ts file only cleans expired keys on calls to the function listPublicKeys()
rather than on generating a new signing key.

4.2.11.4 Solution Advice

X41 recommends to clean up expired keys also on the generation of new signing keys.

X41 D-Sec GmbH FOR PUBLICACTION Page 55 of 63

Penetration Test on Backstage for the Backstage team

4.2.12 SPBS-CR-22-111: Missing Operational Security Guidelines

Affected Component: Documentation
Remediation: NOT

4.2.12.1 Remediation

Guidelines for maintainers will be updated in the future, currently this issue is not resolved.

4.2.12.2 Customer Response

“Guidelines for maintainers will be documented in some form, and we’ll check in with
CNCF and Spotify security to see what they recommend regarding MFA.”

4.2.12.3 Description

While certain best practices are already adopted by the project, the posture could still be improved
and guidelines created.
The following best practices have already been adopted:

• 2FA26 is enforced for all members of the Backstage GitHub organization
• Service account credentials are inaccessible to developers
• Pull Requests require approval from at least one other team member

– Any changes to this setting require re-login with 2FA
However, the only currently used second factors for GitHub are either TOTP27 or SMS28, both of
which have various downsides and potential for user errors that users should be made aware of.
In the case of TOTP, the TOTP secret could be stored within a password manager along with
the password, essentially cancelling out the security gains 2FA with TOTP can provide. Similarly,
in the case of SMS-based 2FA, features like iCloud syncing of SMS from an iPhone to a Mac
would also cancel out the security gains. In both cases only a single device would need to be
compromised to obtain all factors needed for login.
26 Two Factor Authentication27 Time-based One-Time Password28 Short Message Service

X41 D-Sec GmbH FOR PUBLICACTION Page 56 of 63

Penetration Test on Backstage for the Backstage team

Additionally, both factors are not resistant to phishing: A convincing phishing website could lead
a user to enter both factors on the phishing site, giving the attacker full access.

4.2.12.4 Solution Advice

X41 recommends to develop operational security guidelines for the project, by writing down the
already adopted practices and further strengthening security and phishing resistance by heavily
encouraging the use of hardware security keys as second factors for day-to-day use. Users should
be made aware of the downsides of TOTP and SMS-based 2FA.
In particular, the hardware security keys should support WebAuthn, since WebAuthn challenge
responses are bound to domains. Meaning that even if a user enters their password on a phishing
site, the phishing site then relays a valid challenge from the legit site to the user and the user signs
the challenge with their security key, that challenge will be bound to the domain of the phishing
site. This means that the legit site would not accept it and authentication would fail.
While GitHub does require either TOTP or SMS as a second factor before offering the user the
option of enrolling a hardware security key, TOTP or SMS should only be used as backup, in
case the hardware security key is lost, to make optimal use of the phishing protections hardware
security keys with WebAuthn can provide.

X41 D-Sec GmbH FOR PUBLICACTION Page 57 of 63

Penetration Test on Backstage for the Backstage team

4.2.13 SPBS-CR-22-112: Insecure Kubernetes Examples in contrib Folder

Affected Component: contrib/kubernetes/basic_kubernetes_example_with_helm
Remediation: NOT

4.2.13.1 Remediation

This issue is not resolved, but additional references will be added to the documentation.

4.2.13.2 Customer Response

“We’ll add appropriate links to the documentation.”

4.2.13.3 Description

While reviewing the provided source code it was noticed that the contrib folder contains a ba-
sic Kubernetes example of how to deploy the Backstage software complex within Kubernetes.
Specifically, the fileswithin the folder contrib/kubernetes/basic_kubernetes_example_with_helm show
how to run the solution in Kubernetes in terms of YAML29 files.
However, the example lacks some vital security considerations when using Kubernetes, including,
but not limited to, the following:

• Missing Role Definitions for RBAC30

• Missing Pod Security Policies
• Missing Network Policies
• Missing Resource Policies
• Auto-mount of service account tokens not disabled

4.2.13.4 Solution Advice

X41 recommends to provide some guidance for developers which are new to Kubernetes, espe-
cially to provide links to useful documentation regarding best practices for security in Kubernetes.
29 YAML Ain’t Markup Language30 Role Based Access Control

X41 D-Sec GmbH FOR PUBLICACTION Page 58 of 63

Penetration Test on Backstage for the Backstage team

4.2.14 SPBS-CR-22-113: Recommended Firewalling of Back-End

Affected Component: Docs
Remediation: PARTLY

4.2.14.1 Remediation

The documentation was slightly improved and will get more detailed information about the threat
model and a security section in the future.

4.2.14.2 Customer Response

“Documentation has already been improved somewhat, and this will be documented
as part of our upcoming thread model. We’ll also add a security section to our deploy-
ment documentation, and link to it where needed.”

4.2.14.3 Description

In a call with the developers, the testers learned that the back-end should be placed behind an
access control system and not exposed directly to untrusted parties such as on the Internet.
This recommendation is not obvious from the Getting Started or related documentation. More-
over, the remark “If the system is not directly accessible over your network the following ports
need to be opened”31 suggests that it is normal for it to be directly accessible from the network.
On many server systems, this will include the Internet.

4.2.14.4 Solution Advice

X41 recommends to include the access control recommendation in the setup documentation such
that it is not easily overlooked.

31 https://backstage.io/docs/getting-started/

X41 D-Sec GmbH FOR PUBLICACTION Page 59 of 63

https://backstage.io/docs/getting-started/

Penetration Test on Backstage for the Backstage team

4.2.15 SPBS-CR-22-114: Missing/BrokenAuthentication forAncestry Endoint
in catalog-backend

Affected Component: plugins/catalog-backend/src/service/createRouter.ts
Remediation: FULLY

4.2.15.1 Remediation

The code was modified to pass on the JWT to be verified. This resolves the issue.
1 .get(

2 '/entities/by-name/:kind/:namespace/:name/ancestry',

3 async (req, res) => {

4 const { kind, namespace, name } = req.params;

5 const entityRef = stringifyEntityRef({ kind, namespace, name });

6 const response = await entitiesCatalog.entityAncestry(entityRef, {

7 authorizationToken: getBearerToken(req.header('authorization')),

8 });

9 res.status(200).json(response);

10 },

11)

Listing 4.21: JWT Handling in Ancestry Endpoint

The corrsponding pull request is 885332, with a fix unrelated to the actual issue in pull request
1017233.

4.2.15.2 Description

The catalog-backend provides an endpoint to query for the ancestors of entities within the cre-
ateRouter.ts file. The API endpoint corresponds to a GET endpoint, and does not pass on any
authentication token, which is in contrast to other endpoints regarding entities, such as the end-
point GET /entities/by-name/:kind/:namespace/:name in the createRouter.ts file.
It was verified through inspection of the authentication code that a missing authentication token
will lead to a denial of access to the requested resources if the permissions are enabled via the
configuration.
32 https://github.com/backstage/backstage/pull/885333 https://github.com/backstage/backstage/pull/10172

X41 D-Sec GmbH FOR PUBLICACTION Page 60 of 63

https://github.com/backstage/backstage/pull/8853
https://github.com/backstage/backstage/pull/10172

Penetration Test on Backstage for the Backstage team

Code Listing 4.22 shows the issue. It is evident that the endpoint does not extract any authenti-
cation token from the HTTP request.

1 .get(

2 '/entities/by-name/:kind/:namespace/:name/ancestry',

3 async (req, res) => {

4 const { kind, namespace, name } = req.params;

5 const entityRef = stringifyEntityRef({ kind, namespace, name });

6 const response = await entitiesCatalog.entityAncestry(entityRef);

7 res.status(200).json(response);

8 },

9)

Listing 4.22: Missing Authentication for the Ancestry Endpoint

4.2.15.3 Solution Advice

The code processing the actual request in method entitiesCatalog.entityAncestry(entityRef) is ex-
pecting an authentication token as optional argument and checks if the token is valid.
X41 recommends to fix this functionality defect.

X41 D-Sec GmbH FOR PUBLICACTION Page 61 of 63

Penetration Test on Backstage for the Backstage team

5 About X41 D-Sec GmbH

X41 D-Sec GmbH is an expert provider for application security and penetration testing services.
Having extensive industry experience and expertise in the area of information security, a strong
core security team of world-class security experts enables X41 D-Sec GmbH to perform premium
security services.
X41 has the following references that show their experience in the field:

• Review of the Mozilla Firefox updater1
• X41 Browser Security White Paper2
• Review of Cryptographic Protocols (Wire)3
• Identification of flaws in Fax Machines4,5
• Smartcard Stack Fuzzing6

The testers at X41 have extensive experience with penetration testing and red teaming exercises
in complex environments. This includes enterprise environments with thousands of users and
vendor infrastructures such as the Mozilla Firefox Updater (Balrog).
Fields of expertise in the area of application security encompass security-centered code reviews,
binary reverse-engineering and vulnerability-discovery. Custom research and IT security consult-
ing, as well as support services, are the core competencies of X41. The team has a strong tech-
nical background and performs security reviews of complex and high-profile applications such as
Google Chrome and Microsoft Edge web browsers.
X41 D-Sec GmbH can be reached via https://x41-dsec.de or mailto:info@x41-dsec.de.

1 https://blog.mozilla.org/security/2018/10/09/trusting-the-delivery-of-firefox-updates/2 https://browser-security.x41-dsec.de/X41-Browser-Security-White-Paper.pdf3 https://www.x41-dsec.de/reports/Kudelski-X41-Wire-Report-phase1-20170208.pdf4 https://www.x41-dsec.de/lab/blog/fax/5 https://2018.zeronights.ru/en/reports/zero-fax-given/6 https://www.x41-dsec.de/lab/blog/smartcards/

X41 D-Sec GmbH FOR PUBLICACTION Page 62 of 63

https://x41-dsec.de
mailto:info@x41-dsec.de
https://blog.mozilla.org/security/2018/10/09/trusting-the-delivery-of-firefox-updates/
https://browser-security.x41-dsec.de/X41-Browser-Security-White-Paper.pdf
https://www.x41-dsec.de/reports/Kudelski-X41-Wire-Report-phase1-20170208.pdf
https://www.x41-dsec.de/lab/blog/fax/
https://2018.zeronights.ru/en/reports/zero-fax-given/
https://www.x41-dsec.de/lab/blog/smartcards/

Penetration Test on Backstage for the Backstage team

Acronyms

2FA Two Factor Authentication . 56
API Application Programming Interface . 6
CWE Common Weakness Enumeration . 12
DoS Denial of Service . 17
HTTP HyperText Transfer Protocol . 40
JSON JavaScript Object Notation . 39
JWT JSONWeb Token . 13
LTS Long Term Support . 51
PGP Pretty Good Privacy . 51
RBAC Role Based Access Control . 58
SMS Short Message Service . 56
SSRF Server-Side Request Forgery . 45
TCP Transmission Control Protocol . 39
TOCTOU Time-of-check to time-of-use . 23
TOTP Time-based One-Time Password . 56
URI Uniform Resource Identifier . 40
URL Uniform Resource Locator . 21
YAML YAML Ain’t Markup Language . 58

X41 D-Sec GmbH FOR PUBLICACTION Page 63 of 63

	Executive Summary
	Introduction
	Methodology
	Findings Overview
	Scope
	Coverage
	Is the core code safe from the attack vectors identified in the threat model?
	What processes can the Backstage team adopt to screen plugins for security issues?
	Are the project's build and deploy systems safe from intrusion? Can policies and procedures be improved?
	Does backstage have sufficient documentation to prevent a junior admin from making serious security mistakes when setting up a backstage project? Are the default settings generally secure?
	Is backstage’s complex auth system robust and resilient against intrusion?

	Recommended Further Tests

	Rating Methodology for Security Vulnerabilities
	Common Weakness Enumeration

	Results
	Findings
	SPBS-CR-22-01
	SPBS-CR-22-02
	SPBS-CR-22-03
	SPBS-CR-22-04
	SPBS-CR-22-05
	SPBS-CR-22-06
	SPBS-CR-22-08
	SPBS-CR-22-09
	SPBS-CR-22-10
	SPBS-CR-22-11
	SPBS-CR-22-12
	SPBS-CR-22-13

	Side Findings
	SPBS-CR-22-100
	SPBS-CR-22-101
	SPBS-CR-22-102
	SPBS-CR-22-103
	SPBS-CR-22-104
	SPBS-CR-22-105
	SPBS-CR-22-106
	SPBS-CR-22-107
	SPBS-CR-22-108
	SPBS-CR-22-109
	SPBS-CR-22-110
	SPBS-CR-22-111
	SPBS-CR-22-112
	SPBS-CR-22-113
	SPBS-CR-22-114

	About X41 D-Sec GmbH

