
Wire Security Review – Phase 2 – Android Client
forWire Swiss GmbH

Final Report

2018-03-07

FOR PUBLIC RELEASE

Contents

1 Summary 2

2 Android Client Review 3

2.1 Privacy . 3
2.2 Cryptography . 7
2.3 Storage . 10
2.4 Network . 12
2.5 Platform . 14
2.6 CodeQuality . 15
2.7 Implementation Security Issues . 19

3 About 33

1

1 Summary

This report is a review of Wire’s Android application security and privacy, describing
strengths and limitations, and highlighting a number of minor shortcomings and potential
improvements. We also report five low-severity software bugs and one high-severity bug.
The source code audit otherwise reflected adherence to secure software development
principles.
As noted throughout the report, Wire has adequately addressed the security issues
reported.
ThemainWire repositories covered during the review are wire-android, wire-android-
sync-engine, andwire-cryptobox-jni.
This review does not cover:

• the core cryptography component Proteus, previously reviewed 1 ;
• the callingmechanism, covered in a separate review;
• code of third-party dependencies.

The work was performed between March and November 2017, by Jean-Philippe
Aumasson (Kudelski Security) andMarkus Vervier (X41D-Sec GmbH), with support from
Yolan Romailler (Kudelski Security). A total of 9 person-days were spent. It reflects the
code base as provided during the time of review.

1https://www.x41-dsec.de/reports/Kudelski-X41-Wire-Report-phase1-20170208.pdf

2

https://www.x41-dsec.de/reports/Kudelski-X41-Wire-Report-phase1-20170208.pdf

2 Android Client Review

We reviewed security and privacy features of theWire Android client, mainly based on
the source code review, as well as on dynamic analysis of the official Wire APK using
device emulators, a rooted device, and test devices.
The following sections illustrates how the Wire Android application protects against
various technical risks, highlighting potential issues and providing mitigation
recommendations.
Several observations weremade on older versions of the applications (as ofMarch 2017),
but all observations reported in this version of the report apply to the version of the app
available mid November 2017:

• wire-android: revision 4135eada49b6f8504822cef59bad808dee2da2e7;
• wire-android-sync-engine: 565b72cb22fe315f79850ef728b3baa0ff516d77.

2.1 PRIVACY

This section summarizes our review of potential privacy leaks.

2.1.1 Logcat Leaks

Wedid not find privacy leaks in the logs generated by the released application.
When following the instructions in the provided README.md 1 file, no sensitive data is
sent to the logs. However, users building the app themselves should know that a default

1https://github.com/wireapp/wire-android/blob/master/README.md

3

https://github.com/wireapp/wire-android/blob/master/README.md

Wire Security Review – Phase 2 – Android Client Wire Swiss GmbH

build of the appwill enable verbose-level logs, which write various sensitive information
to the Android logcat. Examples are content of messages, email address and password
length at login.

2.1.2 Uninstall Leftovers

After installing the application, using it to send and receive a few messages, and
uninstalling it, we did not find files created by the installation or the usage of the app that
would reveal a previous installation of the app on the device, with the exception of logcat
and app usage logs.
TheWire app was found to have aminimal footprint on the device, with downloaded files
in the locations onemay expect for them. Notably picture and audio files are not stored
in a publicly accessible way.
After uninstalling, files are removedwith the exception of:

• Video recordings located in the Pictures/WIRE_MEDIA folder. Failed recordings are
also kept, which should be avoided and fixed. (To reproduce: begin recording, stop
recording and kill the wire appwhen offered with the “Retry/Ok”.)

• Downloaded files are kept in the Download folder, without any mention of Wire,
hence does not reveal the use of Wire. However, Pictures ares stored in a Wire/
folder.

• Traces can still be found in the logs (logcat, typically) and usage stats of the Android
system.

Regarding the persistence of video recordings, we recommend using the internal
Android file storage as often as possible instead of the external, world readable one.
Upon uninstalling, the internal storage is automatically wiped by Android. This can
however be a problem if large videos are taken since those could fill up toomuch space.
Themethod handling themedia capture is in the file wire-android/app/src/main/java
/com/waz/zclient/pages/main/conversation/AssetIntentsManager.java, where
it’s requesting external storage instead of internal one to store the video files.

FOR PUBLIC RELEASE Page 4 of 34

Wire Security Review – Phase 2 – Android Client Wire Swiss GmbH

Wire has addressed these issues by removing references toWire for downloaded files
and pictures2, deleting failed recordings3 and temporary video files4.

2.1.3 Telemetry Data

Localytics is used to perform analytics based on user usage data. Users can opt out of this
tracking in the settings, but by default data such as the following is tracked:

• type of connection (WiFi, 4G, etc.);
• the time, size, and type of assets exchanged (photo, audio, video, or other files);
• call duration and type (audio or video), etc.

Such data can obviously leak privacy-sensitive information, even if the data is shared
anonymously. Wiremigrated toMixpanel during the review. The reviewed code was still
using Localytics.

2.1.4 Crash Reports

HockeyApp is used to collect and crash reports from the application and share themwith
Wire for QA purposes.
These reports do not seem to include obvious sensitive information, since they mainly
contain Java stack traces. Yet stack traces and exceptionmessages can reveal potentially
sensitive information such as content URIs:

1 src/main/scala/com/waz/service/downloads/Downloader.scala
2 25:import com.waz.HockeyApp
3 165: HockeyApp.saveException(ex, s"video transcoding failed for uri: ${asset.uri}")
4 186: case cause: Throwable => HockeyApp.saveException(cause, s"audio encoding failed
5 for URI: $uri")

2See https://github.com/wireapp/wire-android-sync-engine/pull/301/ and https://github
.com/wireapp/wire-android/pull/1400

3See https://github.com/wireapp/wire-android/pull/1414
4See https://github.com/wireapp/wire-android-sync-engine/pull/308

FOR PUBLIC RELEASE Page 5 of 34

https://github.com/wireapp/wire-android-sync-engine/pull/301/
https://github.com/wireapp/wire-android/pull/1400
https://github.com/wireapp/wire-android/pull/1400
https://github.com/wireapp/wire-android/pull/1414
https://github.com/wireapp/wire-android-sync-engine/pull/308

Wire Security Review – Phase 2 – Android Client Wire Swiss GmbH

Listing 2.1: Crash Reports

This specific issue and other similar ones have been fixed in the latest version of the app
(the asset URI is not recorded anymore).
Wire has addressed this issue by removing sensitive data such as identifiers and URIs
fromHockeyApp exception descriptions5. Additionally users can opt out of this tracking
in the settings.

2.1.5 Screen Copies

The application attempts to detect and block remote screenshots of the Wire
conversation windowwhen it includes timedmessages, but not otherwise. We tested this
feature on a Nexus 5X, but can’t guarantee that it’s effective on all devices and for all
Android versions (it probably isn’t).
Locally, the Android app switcher shows a preview of the currentWire screen, and does
not attempt to hide sensitive data such as conversations content. We recommend to
create an opt-in configurable that allows to protect against unwanted screenshots.

2.1.6 FilesMetadata

Images sent over the app are stripped of their metadata such as for example geotags.
This applies to photos taken from the app or pictures from the image gallery. Videos are
not geo-taggedwhen taken from the app, but if taken from the gallery metadata is not
stripped.
Other files uploaded are left unchanged. This includes office documents, audio files, PDFs,
and other documents.

5See https://github.com/wireapp/wire-android-sync-engine/pull/269

FOR PUBLIC RELEASE Page 6 of 34

https://github.com/wireapp/wire-android-sync-engine/pull/269

Wire Security Review – Phase 2 – Android Client Wire Swiss GmbH

2.1.7 URL Previews

Previews of URLs are generated when an URL is entered, thereby generating a DNS
request and subsequent HTTP requests to fetch the preview content. This behavior leaks
the address of the sender to the URL’s servers, and reveals that the URLwas sent. It was
not observed on the receiver’s side.
Unlike the iOS application, the Android application doesn’t allow users to disable
previews.

2.2 CRYPTOGRAPHY

This section reports on themain cryptographic threats against the application.

2.2.1 PseudorandomGenerator

Android’s SecureRandom is used to generated cryptographic material, as for example in:

1 object AESUtils {
2

3 lazy val random = new SecureRandom()
4

5 def base64(key: Array[Byte]) = Base64.encodeToString(key, Base64.NO_WRAP |
Base64.NO_CLOSE),→

6 def base64(key: String) = Base64.decode(key, Base64.NO_WRAP | Base64.NO_CLOSE)
7

8 def randomKey(): AESKey = AESKey(returning(new Array[Byte](32)) { random.nextBytes
}),→

9 def randomKey128(): AESKey = AESKey(returning(new Array[Byte](16)) {
random.nextBytes },→

Listing 2.2: SecureRandomPseudorandomGenerator

SecureRandom is an interface to a cryptographically secure PRNG, however
scala.util.Random is also used, but is considered insecure6. It relies on

6https://github.com/scala/scala/blob/v2.12.0/src/library/scala/util/Random.scala#L1

FOR PUBLIC RELEASE Page 7 of 34

https://github.com/scala/scala/blob/v2.12.0/src/library/scala/util/Random.scala#L1

Wire Security Review – Phase 2 – Android Client Wire Swiss GmbH

java.util.Random, which is a linear congruential PRNG, with 48-bit state, which does
not have the properties required for cryptographically secure random number
generation. We examined all the uses of this insecure PRNG, and none seems
security-critical. The use of non-cryptographic PRNG doesn’t seem to create security
risks because bad randomness would not create a security risk in this context.
Nonetheless, using a strong PRNG everywhere is considered best practice.
Wire has addressed the issue by switching from Random to SecureRandom at several non-
security critical places7.

2.2.2 Cryptobox Integration and Usage

Relevant files reviewed are CryptoBoxService.scala, OtrService.scala,
OtrClient.scala, OtrClients.scala, CryptoSessionService.scala,
AccountService.scala, ZMessaging.scala, as well as the cryptobox-jni repository.
Cryptobox objects seem to be deleted insecurelywithout erasing thememorywith zeroes
or other values, however after investigation the issue, we concluded that this can’t be
fixed reliably due to the behavior of flashmemory.

1 def deleteCryptoBox() = Future {
2 _cryptoBox.foreach(_.close())
3 _cryptoBox = None
4 IoUtils.deleteRecursively(cryptoBoxDir)
5 verbose(s"cryptobox directory deleted")
6 }

Listing 2.3: Cryptobox usage

A known technical risk, already discussed with Wire, is the use of SHA-256 as an
authenticator such as for example in:

1 private def decodeExternal(key: AESKey, sha: Option[Sha256], extData:
Option[Array[Byte]]) =,→

2 for {

7See https://github.com/wireapp/wire-android/pull/1380 and https://github.com/wireapp
/wire-android-sync-engine/pull/293

FOR PUBLIC RELEASE Page 8 of 34

https://github.com/wireapp/wire-android/pull/1380
https://github.com/wireapp/wire-android-sync-engine/pull/293
https://github.com/wireapp/wire-android-sync-engine/pull/293

Wire Security Review – Phase 2 – Android Client Wire Swiss GmbH

3 data <- extData if sha.forall(_.matches(data))
4 plain <- LoggedTry(AESUtils.decrypt(key, data)).toOption
5 msg <- LoggedTry(GenericMessage(plain)).toOption
6 } yield ms

Listing 2.4: SHA-256 Authenticator

See also encryptAssetDataCBC(), which calls mac amere SHA-256 hash of the ciphertext.
Wire mentioned to us that this construction will be replaced by encryptAssetDataGCM(),
which will use AES-GCM authenticated encryption.

2.2.3 Assets Handling

The BadPaddingException is ignored in AESUtils.scala, which is not an issue here as
it occurs when input stream is not fully consumed. However, this is only true with the
current CBC encryption. This ignored exception would be insecure with AEAD 8 , hence
the code should be adaptedwhen AES-GCM is deployed:

1 def inputStream(key: AESKey, is: InputStream) = {
2 val iv = returning(new Array[Byte](16))(IoUtils.readFully(is, _, 0, 16))
3

4 new CipherInputStream(is, cipher(key, iv, Cipher.DECRYPT_MODE)) {
5 ...
6 override def close(): Unit = try {
7 super.close()
8 } catch {
9 case io: IOException =>

10 io.getCause match {
11 case _: BadPaddingException => //ignore
12 case e => throw e
13 }

Listing 2.5: BadPaddingException Ignored
8https://blog.heckel.xyz/2014/03/01/cipherinputstream-for-aead-modes-is-broken-in-j

dk7-gcm/

FOR PUBLIC RELEASE Page 9 of 34

https://blog.heckel.xyz/2014/03/01/cipherinputstream-for-aead-modes-is-broken-in-jdk7-gcm/
https://blog.heckel.xyz/2014/03/01/cipherinputstream-for-aead-modes-is-broken-in-jdk7-gcm/

Wire Security Review – Phase 2 – Android Client Wire Swiss GmbH

2.2.4 Password Protection

TLS-encrypted passwords are hashed using scrypt by the server before being stored, as
per the security white paper using parameters N = 214,r = 8, p = 1, with a random 256-bit
salt, which we could verify in the server code at https://github.com/wireapp/wire-s
erver. This choice of password hashing provides strong protection against password
cracking attacks.

2.2.5 Hardware Support

The application does not support hardware-protected keys.

2.3 STORAGE

This section reports on the data stored on the device.

2.3.1 Internal Storage

Sensitive data (databases andprivate keys: identity key andprekeys) are stored in internal
storage under data/data/com.wire/with permissions preventing other applications to
read them. These databases are unencrypted, however.
An excerpt of internally stored data is given below:

1 ./data/data/com.wire/lib
2 ./data/data/com.wire/files
3 ./data/data/com.wire/files/.localytics
4 ./data/data/com.wire/files/tmp
5 ./data/data/com.wire/files/otr
6 ./data/data/com.wire/files/otr/<ACCOUNT-ID>
7 ./data/data/com.wire/files/otr/<ACCOUNT-ID>/sessions
8 ./data/data/com.wire/files/otr/<ACCOUNT-ID>/prekeys
9 ./data/data/com.wire/files/otr/<ACCOUNT-ID>/prekeys/65535

10 ./data/data/com.wire/files/otr/<ACCOUNT-ID>/prekeys/0
11 ./data/data/com.wire/files/otr/<ACCOUNT-ID>/prekeys/1
12 ./data/data/com.wire/files/otr/<ACCOUNT-ID>/prekeys/2

FOR PUBLIC RELEASE Page 10 of 34

https://github.com/wireapp/wire-server
https://github.com/wireapp/wire-server

Wire Security Review – Phase 2 – Android Client Wire Swiss GmbH

13 ./data/data/com.wire/files/otr/<ACCOUNT-ID>/prekeys/3
14 ...
15

16 ./data/data/com.wire/files/otr/<ACCOUNT-ID>/prekeys/96
17 ./data/data/com.wire/files/otr/<ACCOUNT-ID>/prekeys/97
18 ./data/data/com.wire/files/otr/<ACCOUNT-ID>/prekeys/98
19 ./data/data/com.wire/files/otr/<ACCOUNT-ID>/prekeys/99
20 ./data/data/com.wire/files/otr/<ACCOUNT-ID>/identities
21 ./data/data/com.wire/files/otr/<ACCOUNT-ID>/identities/local
22 ./data/data/com.wire/files/otr/<ACCOUNT-ID>/version
23 ./data/data/com.wire/files/assets
24 ./data/data/com.wire/files/assets/1a
25 ./data/data/com.wire/files/assets/4d
26 ./data/data/com.wire/databases
27 ./data/data/com.wire/databases/ZGlobal.db
28 ./data/data/com.wire/databases/ZGlobal.db-wal
29 ./data/data/com.wire/databases/ZGlobal.db-shm
30 ./data/data/com.wire/databases/com.localytics.android.<ID>.analytics.sqlite
31 ./data/data/com.wire/databases/com.localytics.android.<ID>.in-app.sqlite
32 ./data/data/com.wire/databases/com.localytics.android.<ID>.profile.sqlite
33 ./data/data/com.wire/databases/com.localytics.android.<ID>.in-app.sqlite-journal
34 ./data/data/com.wire/databases/com.localytics.android.<ID>.analytics.sqlite-journal
35 ./data/data/com.wire/databases/com.localytics.android.<ID>.profile.sqlite-journal
36 ./data/data/com.wire/databases/<ACCOUNT-ID>
37 ./data/data/com.wire/databases/<ACCOUNT-ID>-wal

Listing 2.6: Stored Data

2.3.2 External Storage

Encrypted assets are written to external storage (typically, an SDcard), and can only be
decrypted using the corresponding key stored in the protected database in data/data/
com.wire/databases/. Other applications can thus see the number and size of assets
(media, files), but not their clear content.
We could verify that the files stored on the SDcard can be decrypted using the secret
key in the local database. However, these files are only encrypted (with AES-128 in CBC
mode), and not authenticated. This allows another application to surreptitiously modify
them.

FOR PUBLIC RELEASE Page 11 of 34

Wire Security Review – Phase 2 – Android Client Wire Swiss GmbH

2.4 NETWORK

This section reports on network security risks.

2.4.1 TLS Connection

NoHTTP content has been detected except when accessing HTTP links provided to the
application by external applications, or when fetching link previews.
Connections to the backend and wire.com servers use TLS 1.2 with the TLS_ECDHE_RS
A_WITH_AES_256_GCM_SHA384 cipher suite, however platforms that don’t support this
configuration will fall back to a potentially weaker TLS version and cipher suite. This logic
is implemented in ClientWrapper.scala:

1 val domains @ Seq(zinfra, wire) = Seq("zinfra.io", "wire.com")
2 val protocol = "TLSv1.2"
3 val cipherSuite = "TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384"
4 (...)
5 override def configureEngine(engine: SSLEngine, data:

AsyncHttpClientMiddleware.GetSocketData, host: String, port: Int): Unit = {,→

6 debug(s"configureEngine($host, $port)")
7

8 if (domains.exists(host.endsWith)) {
9 verbose("restricting to TLSv1.2")

10 engine.setSSLParameters(returning(engine.getSSLParameters) { params =>
11 if (engine.getSupportedProtocols.contains(protocol))

params.setProtocols(Array(protocol)),→

12 else
warn(s"$protocol not supported by this device, falling back to defaults."),→

13

14 if (engine.getSupportedCipherSuites.contains(cipherSuite))
params.setCipherSuites(Array(cipherSuite)),→

15 else warn(s"cipher suite $cipherSuite not supported by this device,
16 falling back to defaults.")
17 })

Listing 2.7: TLS Connection

As a responseWire has now switched to TLSv1.2, which prevents the fallback.
FOR PUBLIC RELEASE Page 12 of 34

Wire Security Review – Phase 2 – Android Client Wire Swiss GmbH

2.4.2 Pinning

The application performs certificate pinning to enforce the usage of specific CA
certificates. The most relevant source code files are, in the sync engine,
ClientWrapper.scala and ServerTrust.scala.
A DigiCert root certificate is hardcoded, pinned in order to validate certificates for the
backenddomainswire.comandzinfra.io. CAcertificatepinning is applied tohostnames
having any of the two above top-level domains. The hostname is verified to match the
certificate’s CN or SAN record.
However, the root certificate provided to validate the CDN server’s certificate only uses
a 1024-bit RSAmodulus:

1 Subject Public Key Info:
2 Public Key Algorithm: rsaEncryption
3 Public-Key: (1024 bit)
4 Modulus:
5 00:c9:5c:59:9e:f2:1b:8a:01:14:b4:10:df:04:40:
6 db:e3:57:af:6a:45:40:8f:84:0c:0b:d1:33:d9:d9:
7 11:cf:ee:02:58:1f:25:f7:2a:a8:44:05:aa:ec:03:
8 1f:78:7f:9e:93:b9:9a:00:aa:23:7d:d6:ac:85:a2:
9 63:45:c7:72:27:cc:f4:4c:c6:75:71:d2:39:ef:4f:

10 42:f0:75:df:0a:90:c6:8e:20:6f:98:0f:f8:ac:23:
11 5f:70:29:36:a4:c9:86:e7:b1:9a:20:cb:53:a5:85:
12 e7:3d:be:7d:9a:fe:24:45:33:dc:76:15:ed:0f:a2:
13 71:64:4c:65:2e:81:68:45:a7
14 Exponent: 65537 (0x10001)
15 Signature Algorithm: md2WithRSAEncryption
16 (...)

Listing 2.8: 1024 bit Public Key

We recommend that at least a 2048-bit certificate should be used. Here the use of the
MD2 hash function is unfortunate but is not a security risk since this certificate is a root
certificate.
Wire has initially addressed the issue by directly pinning the 2048-bit root key9. It has
nowmigrated away fromCA pinning to pinning the leaf certificate public key.

9See https://github.com/wireapp/wire-android-sync-engine/pull/315

FOR PUBLIC RELEASE Page 13 of 34

https://github.com/wireapp/wire-android-sync-engine/pull/315

Wire Security Review – Phase 2 – Android Client Wire Swiss GmbH

2.5 PLATFORM

This section reports on general security risks related to the Android platform.

2.5.1 Permissions

TheWire application requests the following permissions, as defined in app/src/main/A
ndroidManifest.xml:

1 android.permission.ACCESS_NETWORK_STATE
2 android.permission.WRITE_EXTERNAL_STORAGE
3 android.permission.INTERNET
4 android.permission.READ_CONTACTS
5 android.permission.RECORD_AUDIO
6 android.permission.VIBRATE
7 android.permission.CAMERA
8 android.permission.FLASHLIGHT
9 android.permission.READ_PHONE_STATE

10 android.permission.MODIFY_AUDIO_SETTINGS
11 android.permission.BLUETOOTH
12 android.permission.WAKE_LOCK
13 com.google.android.c2dm.permission.RECEIVE
14 android.permission.ACCESS_FINE_LOCATION

Listing 2.9: Android Permissions

None of these permissions appear superfluous.

2.5.2 Components Security

We performed basic sanity checks, using drozer10, and observed that the application
does not export any content provider. This is a good practice in terms of security. The
application exports four activities to other applications without requiring permissions,
namely:
10https://labs.mwrinfosecurity.com/tools/drozer/

FOR PUBLIC RELEASE Page 14 of 34

https://labs.mwrinfosecurity.com/tools/drozer/

Wire Security Review – Phase 2 – Android Client Wire Swiss GmbH

1 com.waz.zclient.MainActivity
2 com.waz.zclient.ShareActivity
3 com.waz.zclient.LaunchActivity
4 com.waz.zclient.SMSCodeReceiverActivity

Listing 2.10: Activities

The first three exported activities appear necessary, butWire observed that SMSCodeRec
eiverActivitymay not be used anymore, and therefore should not be exported.
Wire has addressed the issue by removing the SMSCodeReceiverActivity11.

2.5.3 Root Detection

The app does not include any attempt of root detection or any anti-debugmechanisms.
Anti-debug protection is sometimes used to complicate reverse engineering, but this isn’t
a concern here since the application being fully open-source.

2.6 CODEQUALITY

This section reports on general issues regarding the code used in the application.

2.6.1 Native Libraries

The following native libraries are used:

1 libavs.so
2 libcryptobox.so
3 libjnidispatch.so
4 libsodium.so
5 libspotify_sdk.so
6 libcryptobox-jni.so
7 libgnustl_shared.so

11See https://github.com/wireapp/wire-android/pull/1398

FOR PUBLIC RELEASE Page 15 of 34

https://github.com/wireapp/wire-android/pull/1398

Wire Security Review – Phase 2 – Android Client Wire Swiss GmbH

8 liblzw-decoder.so
9 libspotify_embedded_shared.so

Listing 2.11: Native Libraries

The AVS and Cryptobox libraries are provided byWire. AVS includes some third-party
code. Both libraries were reviewed in the previous phase (partially for AVS).
We did not review the source code of third-party libraries, but we checked that they are
recent versions at the time of review. Additionally basic properties of the binary files are
verified:

• gnustl and spotify_sdk are not stripped of symbols (x86).
• Stack canaries and fortify source parameters aremissing in jnidispatch, as showed
by the results of the checksec 12 utility, as depicted in figure 2.1.

Figure 2.1: Checksec Results.

Wire has addressed this issue by adding the missing stack canaries, and removing the
unused Spotify library13.

2.6.2 Dependencies

Java and Scala dependencies listed in build.gradle include the following:

1 scala : "org.scala-lang:scala-library:$scalaVersion",
2 scalaReflect : "org.scala-lang:scala-reflect:$scalaVersion",
3

4 // Lint dependencies

12https://github.com/slimm609/checksec.sh
13See https://github.com/wireapp/wire-android-sync-engine/pull/304

FOR PUBLIC RELEASE Page 16 of 34

https://github.com/slimm609/checksec.sh
https://github.com/wireapp/wire-android-sync-engine/pull/304

Wire Security Review – Phase 2 – Android Client Wire Swiss GmbH

5 lintapi : 'com.android.tools.lint:lint-api:24.5.0',
6 lintchecks : 'com.android.tools.lint:lint-checks:24.5.0',
7

8 // Checkstyle dependencies
9 checkstyleapi : "com.puppycrawl.tools:checkstyle:$checkstyleVersion",

10

11 // Support libs
12 multidex : "com.android.support:multidex:1.0.1",
13 supportv4 : "com.android.support:support-v4:$supportLibVersion",
14 supportv13 : "com.android.support:support-v13:$supportLibVersion",
15 supportdesign : "com.android.support:design:$supportLibVersion",
16 appcompatv7 : "com.android.support:appcompat-v7:$supportLibVersion",
17 recyclerview : "com.android.support:recyclerview-v7:$supportLibVersion",
18 supportannotations :

"com.android.support:support-annotations:$supportLibVersion",,→

19 preferences : "com.android.support:preference-v7:$supportLibVersion",
20 cardview : "com.android.support:cardview-v7:$supportLibVersion",
21

22 // Play services
23 psBase :

"com.google.android.gms:play-services-base:$playServicesVersion",,→

24 psGcm :
"com.google.android.gms:play-services-gcm:$playServicesVersion",,→

25 psMaps :
"com.google.android.gms:play-services-maps:$playServicesVersion",,→

26 psLocation :
"com.google.android.gms:play-services-location:$playServicesVersion",,→

27

28 // Other
29 timber : 'com.jakewharton.timber:timber:4.1.1',
30 hockey : 'net.hockeyapp.android:HockeySDK:3.7.2',
31 threetenabp : 'com.jakewharton.threetenabp:threetenabp:1.0.3',
32 localytics : 'com.localytics.android:library:3.8.2',
33 rebound : 'com.facebook.rebound:rebound:0.3.8',
34 supportpreferences : 'net.xpece.android:support-preference:0.8.1',
35

36 // Internal
37 audioNotifications : "com.wire:audio-notifications:$audioVersion",
38

39 stetho : 'com.facebook.stetho:stetho:1.4.2',
40

41 // Test dependencies
42 junit : 'junit:junit:4.12',
43 testutils : "com.wire:testutils:$zMessagingDevVersionBase",

FOR PUBLIC RELEASE Page 17 of 34

Wire Security Review – Phase 2 – Android Client Wire Swiss GmbH

44 scalatest : "org.scalatest:scalatest_$scalaMajorVersion:2.2.6",
45 testRunner : 'com.android.support.test:runner:0.4.1',
46 testRules : 'com.android.support.test:rules:0.4.1',
47 espresso : 'com.android.support.test.espresso:espresso-core:2.2',
48 espressoIntents : 'com.android.support.test.espresso:espresso-intents:2.2',
49 hamcrestCore : 'org.hamcrest:hamcrest-core:1.3',
50 hamcrestLib : 'org.hamcrest:hamcrest-library:1.3',
51 hamcrestIntegration: 'org.hamcrest:hamcrest-integration:1.3',
52

53 mockitoCore : 'org.mockito:mockito-core:1.10.19',
54 //The dexmaker stuff is needed for Mockito to work completely
55 dexmaker : 'com.crittercism.dexmaker:dexmaker:1.4',
56 dexmakerDx : 'com.crittercism.dexmaker:dexmaker-dx:1.4',
57 dexmakerMockito : 'com.crittercism.dexmaker:dexmaker-mockito:1.4',
58

59 // Translations
60 translations : 'com.wire:wiretranslations:1.+',
61

62 //Json parser
63 gson : 'com.google.code.gson:gson:2.2.4'

Listing 2.12: Dependencies

Furthermore, dependencies of the sync engine listed in build.sbt include:

1 Deps.supportV4 % Provided,
2 "com.koushikdutta.async" % "androidasync" % "2.1.8",
3 "com.googlecode.libphonenumber" % "libphonenumber" % "7.1.1", // 7.2.x breaks

protobuf,→

4 "com.softwaremill.macwire" %% "macros" % "2.2.2" % Provided,
5 "com.google.android.gms" % "play-services-base" % "7.8.0" % Provided

exclude("com.android.support", "support-v4"),,→

6 "com.google.android.gms" % "play-services-gcm" % "7.8.0" % Provided,
7 Deps.avs % Provided,
8 Deps.cryptobox,
9 Deps.genericMessage,

10 Deps.backendApi,
11 "com.wire" % "icu4j-shrunk" % "57.1",
12 Deps.spotifyPlayer,
13 "org.threeten" % "threetenbp" % "1.3" % Provided,
14 "com.googlecode.mp4parser" % "isoparser" % "1.1.7",
15 Deps.hockeyApp % Provided,

FOR PUBLIC RELEASE Page 18 of 34

Wire Security Review – Phase 2 – Android Client Wire Swiss GmbH

16 Deps.localytics,
17 "net.java.dev.jna" % "jna" % "4.2.0",
18 "org.robolectric" % "android-all" % RobolectricVersion % Provided

Listing 2.13: Sync Engine Dependencies

Among these dependencies, AndroidAsync has known vulnerabilities on older versions of
Android (<4.0.3, see https://github.com/koush/AndroidAsync/issues/478), however
theWire application is only for Android 4.2 and higher, so this is not considered to be an
issue.

2.6.3 Build Errors andWarnings

A build in Android Studio reports a number of errors (deprecated classes, etc.) and
warnings. These are likely known by the developers though, and do not seem to pose any
security risk.

2.6.4 Input Validation

Weonly report twominor observations regarding validation of input supplied through
the UI:
1. The type of file transmitted is inferred from the file’s extension, rather than from
the file’s magic signature. This simplifies attacks exploiting weaknesses in parsers
of specific files formats. It would also bemore convenient for users if file types are
identified from their signatures.

2. Newlines in messages are not stripped in sent messages when displayed in the
Android client, unlike in desktop and iOS, as observed in our emulated Nexus 5X.
This is not considered to be a security issue.

2.7 IMPLEMENTATION SECURITY ISSUES

Security issues that are resulting from implementation level vulnerabilities are described
here.

FOR PUBLIC RELEASE Page 19 of 34

https://github.com/koush/AndroidAsync/issues/478

Wire Security Review – Phase 2 – Android Client Wire Swiss GmbH

All of these issues have been addressed byWire, andwe reviewed the relevant patches
to confirm their effectiveness.

FOR PUBLIC RELEASE Page 20 of 34

Wire Security Review – Phase 2 – Android Client Wire Swiss GmbH

2.7.1 WIRE-Android-01: Bias in the Cryptographic PRNG

Severity: LOW
CWE: 330

2.7.1.1 Description

The JNI wrapper to libsodium’s randombytes_buf checks that the buffer holding the
generated pseudorandom bytes is not all-zero, allegedly because it could indicate a
problem in the PRNG.
The affected code is in file wire-android-sync-engine/zmessaging/src/main/jni/ra
ndombytes.c:

1 JNIEXPORT jboolean JNICALL Java_com_waz_utils_crypto_RandomBytes_randomBytes(JNIEnv
*jenv, jobject obj, jbyteArray jarr, jint jcount) {,→

2 unsigned char* buffer = (unsigned char *) (*jenv)->GetByteArrayElements(jenv,
jarr, 0);,→

3 size_t count = (size_t) jcount;
4

5 randombytes_buf(buffer, count);
6

7 // check if returned data is not empty
8 int success = 0;
9 for (int i = 0; i < count && !success; ++i) {

10 success |= buffer[i];
11 }
12

13 (*jenv)->ReleaseByteArrayElements(jenv, jarr, (jbyte *) buffer, 0);
14 return success;
15 }

Listing 2.14: PRNGBias

However, an unintended consequence of this check is that if the caller requests one
random byte, then this byte will never be zero. Likewise with two bytes, three bytes, etc.
This introduces a bias in the PRNG, especially when it’s used to request bytes one at a
time.

FOR PUBLIC RELEASE Page 21 of 34

Wire Security Review – Phase 2 – Android Client Wire Swiss GmbH

This bias does not seem exploitable inWire, however, because RandomBytes is only used
to request 16 ormore bytes, in which case the bias is negligible.
Wire removed the check for zero and fixed the bias 14 .

2.7.1.2 Solution Advice

The check for zero can be safely removed, because libsodium’s is unlikely to fail; libsodium
initialization will return an error if it fails to find a proper PRNG. This return value is
properly checked in the code shown in listing 2.15.

1 jint JNI_OnLoad(JavaVM * vm, void* reserved) {
2 if (sodium_init() < 0) {
3 return -1;
4 }
5

6 return JNI_VERSION_1_6;
7 }

Listing 2.15: libsodiumCheck

14https://github.com/wireapp/wire-android-sync-engine/pull/303

FOR PUBLIC RELEASE Page 22 of 34

https://github.com/wireapp/wire-android-sync-engine/pull/303

Wire Security Review – Phase 2 – Android Client Wire Swiss GmbH

2.7.2 WIRE-Android-02: Potential Out-of-Bound Write in the LZW
Decoder

Severity: LOW
CWE: 787

2.7.2.1 Description

Source code for liblzw-decoder.so can be found in LzwDecoder.cpp and LzwDecoder.h
of the sync engine. This code is used in LzwDecoder.scala, called in AnimGifDecoder.s
cala. The processed GIF image files could be attacker controlled. We therefore consider
them untrusted.
Issues discovered in this code include:

• LzwDecoder::clear does not check that x and y arewithin the allowed bounds, and
therefore allows towrite arbitrary data at arbitrary (positive or negative) offsets
from *dst.

• Invalid bound check in decode: if data_size=image[idx++]; (image[0]) is equal
to 31, then clear=1<<data_size; is negative and therefore the check if(clear>
=MAX_STACK_SIZE)return; is successfully passed. Likewise values than 31 yield
clear=0, passing the check again. This again would allow for out-of-boundwrite.

However, the C LZW decoder does not seem to pose security issues as used in Wire.
This is because an attacker only controls the file’s content and not directly the other
parameters passed to the decoder by theWire application. A limitation, however, is file
size: both LzwDecoder.cpp, callers in LzwDecoder.scala, as well as Gif.scala use int
types for file length and dimensions. Files of one gigabyte ormorewould thus overflow
these parameters and lead to incorrect decoding.
Security checks for arithmetic overflows and bounds checks have been introduced 15 by
Wire to fix this issue.
15https://github.com/wireapp/wire-android-sync-engine/pull/297

FOR PUBLIC RELEASE Page 23 of 34

https://github.com/wireapp/wire-android-sync-engine/pull/297

Wire Security Review – Phase 2 – Android Client Wire Swiss GmbH

2.7.2.2 Solution Advice

LzwDecoder.scala should be patched to add themissing bound checks.

FOR PUBLIC RELEASE Page 24 of 34

Wire Security Review – Phase 2 – Android Client Wire Swiss GmbH

2.7.3 WIRE-Android-02: Path TraversalWhen Saving Files

Severity: HIGH
CWE: 23

2.7.3.1 Description

While saving a file received by a contact, the filename is not sanitized in file AssetServi
ce.scala:

1 def getTargetFile(dir: File): Option[File] = {
2 val baseName = asset.name.getOrElse("wire_downloaded_file." +

asset.mime.extension) // XXX: should get default file name form resources,→

3 // prepend a number to the name to get unique file name,
4

// will try sequential numbers from 0 - 10 first, and then fallback to random ones,→

5 // will give up after 100 tries
6 val prefix = ((0 to 10).iterator ++

Iterator.continually(Random.nextInt(10000))).take(100),→

7 prefix.map(i => new File(dir, nextFileName(baseName, i))).find(!_.exists())
8 }

Listing 2.16: Directory Traversal

If the filename contains “../”, a directory traversal is possible when writing the file in
function saveAssetData:

1 def saveAssetData(file: File) =
2 loaderService.load(asset, force = true)(loader).future.map {
3 case Some(data) =>
4 //TODO Dean: remove after v2 transition period
5

//Trigger updating of meta data for assets generated (and downloaded) from old AnyAssetData type.,→

6 asset.mime match {
7 case Mime.Video() if asset.metaData.isEmpty || asset.previewId.isEmpty =>

updateMetaData(asset, data),→

8 case Mime.Audio() if asset.metaData.isEmpty => updateMetaData(asset, data)
9 case _ => CancellableFuture.successful(Some(asset))

FOR PUBLIC RELEASE Page 25 of 34

Wire Security Review – Phase 2 – Android Client Wire Swiss GmbH

10 }
11

12 IoUtils.copy(data.inputStream, new FileOutputStream(file))
13 Some(file)
14 case None =>
15 None
16 } (Threading.IO)

Listing 2.17: Function saveAssetData

2.7.3.2 Solution Advice

It is recommended to remove all characters that allow directory traversal such as for
example leading dots and also all forward slash (“/”) characters. Ideally the pathname
should be normalized and fully resolved before checking if the path prefix is equal to
“Environment.DIRECTORY_DOWNLOADS” as defined by the environment.

FOR PUBLIC RELEASE Page 26 of 34

Wire Security Review – Phase 2 – Android Client Wire Swiss GmbH

2.7.4 WIRE-Android-03: In-AppWebViews Loading Remote Content

Severity: LOW
CWE: 829

2.7.4.1 Description

Several places in the application use inapp-webviews to display possibly remote content
(fromWire servers) using the function onOpenUrlInApp defined in AppEntryActivity.s
cala:

1 def onOpenUrlInApp(url: String, withCloseButton: Boolean): Unit = {
2 val prefixedUrl =
3 if (!url.startsWith(AppEntryActivity.HTTP_PREFIX) &&

!url.startsWith(AppEntryActivity.HTTPS_PREFIX)),→

4 AppEntryActivity.HTTP_PREFIX + url
5 else
6 url
7 val transaction = getSupportFragmentManager.beginTransaction
8 transaction.setCustomAnimations(R.anim.new_reg_in, R.anim.new_reg_out)
9 transaction.add(R.id.fl_main_web_view,

InAppWebViewFragment.newInstance(prefixedUrl, withCloseButton),
InAppWebViewFragment.TAG)

,→

,→

10 transaction.addToBackStack(InAppWebViewFragment.TAG)
11 transaction.commit
12 KeyboardUtils.hideKeyboard(this)
13 }

Listing 2.18:Webview

An example is the terms of service URL https://wire.com/legal/terms/embed/ that is
displayed as link on the login screen:

1 termsOfService.foreach{ text =>
2 TextViewUtils.linkifyText(text, ContextCompat.getColor(getContext,

R.color.white), true, new Runnable {,→

FOR PUBLIC RELEASE Page 27 of 34

https://wire.com/legal/terms/embed/

Wire Security Review – Phase 2 – Android Client Wire Swiss GmbH

3 override def run() =
getContainer.onOpenUrlInApp(getString(R.string.url_terms_of_service),
withCloseButton = true)

,→

,→

4 })
5 }

Listing 2.19: Terms of Service Link

Since the loaded content is not visible as external content, a compromisedWire server
might trick users by creating fake navigational elements such as a login screen.
The issue has been fixed 16 byWire. An external browser is opened for remote content.

2.7.4.2 Solution Advice

It is recommended to include all relevant content as static resources in the app. In case
this is impossible, external resources should be opened in a separate Chrome browser
tab.

16https://github.com/wireapp/wire-android/pull/1399

FOR PUBLIC RELEASE Page 28 of 34

https://github.com/wireapp/wire-android/pull/1399

Wire Security Review – Phase 2 – Android Client Wire Swiss GmbH

2.7.5 WIRE-Android-04: Share Activity Does Not Sanitize Shared File

Severity: LOW
CWE: 668

2.7.5.1 Description

Whena sharing intent is received, the sharedfile is not sanitized tobe fromshared storage.
Other untrusted apps on the device could potentially create malicious share intents that
point to files only accessible byWire.
The code handling share intents is defined in ShareActivity.scala:

1 private void handleIncomingIntent() {
2 ShareCompat.IntentReader intentReader = ShareCompat.IntentReader.from(this);
3 if (!intentReader.isShareIntent()) {
4 finish();
5 return;
6 }
7 ...
8 for (int i = 0; i < intentReader.getStreamCount(); i++) {
9 Uri uri = intentReader.getStream(i);

10 if (uri != null) {
11 sharedFileUris.add(new AndroidURI(uri));
12 }
13 }
14 } else {
15 Uri uri = intentReader.getStream();
16 if (uri != null) {
17 sharedFileUris.add(new AndroidURI(uri));
18 }
19 }
20 ...
21 List<URI> sanitisedUris = new ArrayList<>();
22 for (URI uri : sharedFileUris) {
23 String path = AssetUtils.getPath(getApplicationContext(), uri);
24 if (path == null) {
25 Timber.e("Something went wrong, unable to retrieve path");
26 sanitisedUris.add(uri);
27 } else {

FOR PUBLIC RELEASE Page 29 of 34

Wire Security Review – Phase 2 – Android Client Wire Swiss GmbH

28 sanitisedUris.add(AndroidURIUtil.fromFile(new File(path)));
29 }
30 }
31

32 switch (contentType) {
33 case IMAGE:
34 getSharingController().publishImageContent(sanitisedUris);
35 break;
36 case FILE:
37 getSharingController().publishFileContent(sanitisedUris);
38 break;
39 }
40 }
41 }

Listing 2.20: Share Intent

As seen above URIs are read from streams of a received intent. These URIs may point
to any file on the file system. Therefore a user might be tricked into sending out private
files or contents of special files to a contact. Note that the user has to explicitly select a
contact that the files will be shared with. However, this is not far fetchedwhen talking
about unsuspecting users.
The issue has been fixed 17 byWire.

2.7.5.2 Solution Advice

It is recommended to sanitize received files. Ideally only files from shared directories and
external storage should be accepted. In any case files from special directories such as
/dev, /proc, and /data/app/ should be rejected.

17https://github.com/wireapp/wire-android/pull/1406

FOR PUBLIC RELEASE Page 30 of 34

https://github.com/wireapp/wire-android/pull/1406

Wire Security Review – Phase 2 – Android Client Wire Swiss GmbH

2.7.6 WIRE-Android-05: UntrustedWebsitesCanForce-LogoutUsers

Severity: LOW
CWE: 352

2.7.6.1 Description

The special URL wire://password-reset-successful registered by theWire app can be
navigated to from untrusted web sites in Chrome on Android. This will force the current
user of theWire app to be logged out.
The scheme is registered in file AndroidManifest.xml as follows:

1 <intent-filter>
2 <data
3 android:host="password-reset-successful"
4 android:scheme="wire"
5 />
6

7 <action android:name="android.intent.action.VIEW" />
8

9 <category android:name="android.intent.category.DEFAULT" />
10 <category android:name="android.intent.category.BROWSABLE" />
11 <category android:name="android.intent.category.VIEW" />
12 </intent-filter>

Listing 2.21: Password Reset Scheme

The following names are registered for the “wire:” scheme in file IntentUtils.java:

1 public class IntentUtils {
2

3 public static final String WIRE_SCHEME = "wire";
4 public static final String EMAIL_VERIFIED_HOST_TOKEN = "email-verified";
5 public static final String PASSWORD_RESET_SUCCESSFUL_HOST_TOKEN =

"password-reset-successful";,→

6 public static final String SMS_CODE_TOKEN = "verify-phone";

FOR PUBLIC RELEASE Page 31 of 34

wire://password-reset-successful

Wire Security Review – Phase 2 – Android Client Wire Swiss GmbH

7 public static final String INVITE_HOST_TOKEN = "connect";
8 ...

Listing 2.22: Registered Names

Two other registered names seem to be not used anymore and do not expose dangerous
actions.
Wire fixed 18 this issue by checking an authentication cookie for server side invalidation.

2.7.6.2 Solution Advice

It is recommended to provide signaling over secured channels for events such as resetting
a password. The backend system could for example provide such a signal. Additionally the
need for registering a dedicated scheme should be evaluated. For the benefit of security
the number of intents and especially schemes should be kept low.

18https://github.com/wireapp/wire-android-sync-engine/pull/302

FOR PUBLIC RELEASE Page 32 of 34

https://github.com/wireapp/wire-android-sync-engine/pull/302

3 About

Kudelski Security
route de Genève, 22-24
1033 Cheseaux-sur-Lausanne
Switzerland

Kudelski Security is an innovative, independent Swiss provider of tailored cyber and
media security solutions to enterprises and public sector institutions. Our team of
security experts delivers end-to-end consulting, technology, managed services, and
threat intelligence to help organizations build and run successful security programs. Our
global reach and cyber solutions focus is reinforced by key international partnerships.
Kudelski Security is a division of Kudelski Group.
For more information, please visit https://www.kudelskisecurity.com.

X41D-Sec GmbH
Dennewartstr. 25-27
D-52068 Aachen
Germany

X41 D-Sec is an expert provider for application security services. Having extensive
industry experience and expertise in the area of information security, a strong core
security team of world class security experts enables X41 D-Sec to perform premium
security services.
Fields of expertise in the area of application security are security centered code reviews,

33

https://www.kudelskisecurity.com

Wire Security Review – Phase 2 – Android Client Wire Swiss GmbH

binary reverse engineering and vulnerability discovery. Custom research and a IT security
consulting and support services are core competencies ofX41D-Sec.
For more information, please visit https://www.x41-dsec.de.

FOR PUBLIC RELEASE Page 34 of 34

https://www.x41-dsec.de

	Summary
	Android Client Review
	Privacy
	Cryptography
	Storage
	Network
	Platform
	Code Quality
	Implementation Security Issues

	About

