\\-I' | D-Sec

Source Code Audit on CRI-O Runtime
for the OSTIF

Final Report and Management Summary

2025-12-03

- CCBY-SA 4.0 License

X41 D-Sec GmbH
Soerser Weg 20
D-52070 Aachen

Amtsgericht Aachen: HRB19989

https://x41-dsec.de/
info@x41-dsec.de

Organized by the Open Source Technology Fund

https://creativecommons.org/licenses/by-sa/4.0/
https://x41-dsec.de/
info@x41-dsec.de

Source Code Audit on CRI-O Runtime

OSTIF

Revision Date Change Author(s)
1 2025-11-10 Draft Report and Management Alexander Schloegl, Christian
Summary Mayr and Hannes Moesl-Canaval
2 2025-11-21 Final Draft Report Hannes Moesl-Canaval
3 2025-11-21 Final Report Eric Sesterhenn and Yasar Kla-
wohn
4 2025-12-03 Public Report Eric Sesterhenn and Yasar Kla-

X41 D-Sec GmbH

- CCBY-SA 4.0 License

wohn

Page 1 of 23

mailto:eric.sesterhenn@x41-dsec.de
mailto:yasar.klawohn@x41-dsec.de
mailto:yasar.klawohn@x41-dsec.de
mailto:eric.sesterhenn@x41-dsec.de
mailto:yasar.klawohn@x41-dsec.de
mailto:yasar.klawohn@x41-dsec.de

Source Code Audit on CRI-O Runtime OSTIF
1 License 4
2 Executive Summary 5
3 Introduction 7
3.1 Methodology e 8
3.2 SCOPE . o it e e e 8
33 COVEerage . . . o o o e e e e 9
3.4 Recommended Further Tests 11
4 Rating Methodology 12
4.1 CVSS . e 12
4.2 Severity Mapping 15
4.3 Common Weakness Enumeration 15
5 Results 16
51 Findings e 16
5.2 Informational Notes e 16
6 About OSTIF 21
7 About X41 D-Sec GmbH 22

X41 D-Sec GmbH - CCBY-SA 4.0 License

Page 2 of 23

Source Code Audit on CRI-O Runtime OSTIF

Dashboard
Target
Customer OSTIF
Name CRI-O Runtime
Type Runtime
Version 301eb72ed2cad2feac49631aee778be757b78b31
Engagement
Type Source Code Audit

3: Alexander Schloegl, Christian Mayr and Hannes Moesl-
Consultants

Canaval
Engagement Effort 20 person-days, 2025-10-27 to 2025-11-10
Total issues found 0

Criticali - 0

High - 0

Medium -{ 0

Low i- O

None - 2

Figure 1: Issue Overview

X41 D-Sec GmbH - CCBY-SA 4.0 License Page 3 of 23

https://github.com/cri-o/cri-o/commit/301eb72ed2cad2feac49631aee778be757b78b31

Source Code Audit on CRI-O Runtime OSTIF

1 License

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International Li-
cense (CC-BY-SA 4.0). This license permits anyone to copy, redistribute, transform, and build
upon the material for any purpose, including commercial use, provided that appropriate credit
is given to the original author. By applying the ShareAlike condition, derivative works must re-
main freely available under identical licensing terms, ensuring that the same freedoms to use
and adapt are preserved for future recipients. The full legal text of the license is available at

https://creativecommons.org/licenses/by-sa/4.0/.

Unless stated otherwise, this license does not apply to third-party materials contained in this
work. These include but not limited to logos, fonts, images and code snippets, which may be
subject to separate copyright or licensing terms.

X41 D-Sec GmbH - CCBY-SA 4.0 License Page 4 of 23

https://creativecommons.org/licenses/by-sa/4.0/

Source Code Audit on CRI-O Runtime OSTIF

2 Executive Summary

In October and November 2025, X41 D-Sec GmbH performed a Source Code Audit against the
CRI-O Runtime OCI-based container runtime. During the audit, X41 identified no vulnerabili-
ties. Instead, two information findings were spotted where one concerns the use of outdated
dependencies that include known vulnerabilities. While it could not be conclusively verified
whether these issues are directly exploitable through CRI-O, the fact that the affected compo-
nent involves runc - a critical dependency in the container runtime stack - warrants prompt
remediation. Updating the dependency to the latest upstream version is recommended to miti-
gate potential exposure and ensure consistency with current security patches. X41 additionally
recommends establishing a robust update process for dependencies to ensure relevant security
updates are identified and applied in a timely fashion.

The second informational finding pertains to an input validation weakness in the sandbox con-
figuration of CRI-O. While this issue does not present a direct exploitation path, addressing it is
recommended as a defense-in-depth measure to improve the robustness and reliability of con-
tainer runtime isolation.

X41 conducted a comprehensive source code review against the CRI-O Runtime OCI-based con-
tainer runtime.

The test was performed by three experienced senior security experts between 2025-10-27 and
2025-11-10.

Overall, the quality of the code base is outstanding. The functionality exposed through the
APIs is implemented in a deliberately minimalistic fashion, effectively minimizing the potential
attack surface. The use of Go's native constructs for structured parameter handling and safe
data (un)marshalling reflects a high level of proficiency in secure coding practices within the Go
ecosystem. This provides X41 with the impression of a robust, intentionally engineered code
base that demonstrates a clear and consistent security-oriented design philosophy.

During the audit, it was observed that input validation generally follows a narrowly scoped ap-
proach - values are primarily checked to prevent runtime errors or panics within the CRI-O code

X41 D-Sec GmbH - CCBY-SA 4.0 License Page 5 of 23

Source Code Audit on CRI-O Runtime OSTIF

base itself. While efficient, this approach can introduce risks in scenarios involving untrusted
data flowing through multiple integrated components. In such cases, limited validation may al-
low malformed or malicious input to propagate into dependent systems, increasing the likelihood
of indirect vulnerabilities.

Nevertheless, given the open-source nature of CRI-O and its surrounding ecosystem, responsibil-
ity for robust input validation can be shared and improved collaboratively across related projects.
Enhancing input verification mechanisms - whether within CRI-O or its upstream dependencies -
would contribute significantly to overall system resilience. In conclusion, X41 assesses the secu-
rity posture of CRI-O as well-designed and effectively executed, striking a sound balance between
minimalism and practical robustness.

X41 D-Sec GmbH - CCBY-SA 4.0 License Page 6 of 23

Source Code Audit on CRI-O Runtime OSTIF

3 Introduction

X41 conducted a security review of the CRI-O runtime - an OCl-compliant implementation of the
Kubernetes Container Runtime Interface (CRI) responsible for creating, running, and supervising
container workloads on Kubernetes nodes. At a functional level, CRI-O provides the runtime
plumbing between the Kubernetes control plane and OCI-format container images: it pulls and
verifies images from registries, instantiates containers according to pod specifications, sets up
namespaces, cgroups and networking for each container, enforces configured resource limits
and security options, and integrates with image and registry signing/verification mechanisms.

Compromise of the container runtime or its misconfiguration allows attackers to bypass intended
isolation and access cluster resources. A successful compromise can enable attackers to: extract
secrets used by applications or the control plane, deploy persistent malicious containers, manip-
ulate workloads or cluster state, and move laterally to other nodes or control-plane components.
Given CRI-O’s privileged position between Kubernetes and the host, weakness at this layer carries
high potential for privilege escalation and broad impact to confidentiality, integrity, and availabil-

ity.

For example, an attacker who gains code execution inside a container could attempt a container
escape by exploiting weaknesses in isolation or misconfiguration. A plausible non-exhaustive
scenario is a workload started with excessive privileges (for instance, a privileged container, host
PID! namespace, or host file system mounts) or with access to host control sockets; from such
a foothold an attacker could interact with host resources, access host process information, or
manipulate the container runtime to start additional containers with elevated capabilities. Alter-
natively, an attacker could target a vulnerability in the runtime itself (or its use of kernel features)
to break namespace or cgroup isolation and achieve access to the underlying Kubernetes node.
Any of these outcomes would permit access to host-level secrets, persistence mechanisms, or
the ability to disrupt or propagate across the cluster.

The interface between workloads and the runtime could potentially be exploited for DoS? at-

1Process ID
2Denial of Service

X41 D-Sec GmbH - CCBY-SA 4.0 License Page 7 of 23

Source Code Audit on CRI-O Runtime OSTIF

tacks. Data that originates from an unprivileged container, such as debug info, program logs, and
return values, can be used to crash the runtime - and thus also other workloads - if not properly
sanitized and length checked. Such an attack has been demonstrated in a previous audit with a
bug tracked as CVE-2022-170834.

This assessment concentrated on identifying weaknesses in configuration, privilege management,
and implementation within CRI-O that could lead to breaches of confidentiality, integrity, or avail-
ability as previously described. It further aimed to provide recommendations to strengthen the
runtime deployment and minimize the potential impact, or blast radius, of a container compro-
mise.

3.1 Methodology

X41 performed a security code audit of the source code provided via git.

The assessment was conducted as a comprehensive source code review of the public repository
available at https://github.com/cri-o/cri-o.

3.2 Scope

Prior to the commencement of the project, a kick-off meeting was conducted to establish the ob-
jectives of the assessment. During this session, the overall architecture of the CRI-O environment
was presented to the testing team. This included an overview of the CRI-O runtime architecture
itself, as well as its interactions with other core components such as runc.

Additionally, the security objectives of CRI-O were discussed. It was communicated to X41 that,
while CRI-O does not provide explicit security guarantees, its fundamental design intent is that an
unprivileged container should neither influence nor obtain information about other containers or
the host system.

Not all functionalities are handled by CRI-O itself, which informs the scope of the ongoing as-
sessment. The following aspects were discussed as being relevant to security and should be
considered part of the attack surface:

e image downloading and verification
e container image management
e container lifecycle management

Shttps://nvd.nist.gov/vuln/detail/CVE-2022-1708
“https://nvd.nist.gov/vuln/detail/cve-2022-1708

X41 D-Sec GmbH - CCBY-SA 4.0 License Page 8 of 23

https://github.com/cri-o/cri-o
https://nvd.nist.gov/vuln/detail/CVE-2022-1708
https://nvd.nist.gov/vuln/detail/cve-2022-1708

Source Code Audit on CRI-O Runtime OSTIF

e resource isolation as required by the CRI°
With this scope in mind, the security review was performed on the following repository:

e https://github.com/cri-o/cri-o
- Commit: 301eb72ed2cad2feac49631aee778be757b78b31 (Oct 24, 2025)

The CRI-O project is implemented in Go and consists of approximately 60,000 lines of code, ex-
cluding its external dependencies.

3.3 Coverage

A security assessment attempts to find as many of the existing problems as possible, though it is
practically never possible to rule out the likelihood of additional weaknesses being found in the
future. Further, where applicable, suggestions of more resilient design patterns are given.

The time allocated to X41 for this assessment was sufficient to yield a good coverage of the given
scope.

The following paragraphs outline the security assessment procedures and corresponding tests
that were conducted:

1. Package dependencies were examined for publicly disclosed vulnerabilities.

2. In addition to the manual source code review, multiple state-of-the-art static analysis tools
were employed, including semgrep®.

3. Particular attention was paid to the CRI-O sandbox implementation, with a focus on the
role of the infra container in establishing and maintaining pod-level namespaces. The anal-
ysis included the configuration and behavior of user namespaces, the handling of shared
memory segments between the host and containers, and the network and DNS’ config-
urations managed through CNI® plugins. Furthermore, the seccomp profile configuration
and enforcement for unprivileged containers were assessed to determine compliance with
CRI-O’s default security policies and to identify deviations introduced by custom runtime
or container engine configurations.

4. The enforcement of Linux capabilities within CRI-O was reviewed, as excessive or miscon-
figured capabilities can considerably elevate the risk of container escape or host privilege

5Container Runtime Interface
Shttps://github.com/semgrep/semgrep
7Domain Name System

8Container Network Interface

X41 D-Sec GmbH - CCBY-SA 4.0 License Page 9 of 23

https://github.com/cri-o/cri-o
https://github.com/cri-o/cri-o/commit/301eb72ed2cad2feac49631aee778be757b78b31
https://github.com/semgrep/semgrep

Source Code Audit on CRI-O Runtime OSTIF

escalation. The review examined CRI-O’s management of default and runtime-assigned ca-
pability sets, differentiating between allowed, additive, and dropped capabilities as defined
in the container runtime configuration and pod security context. Special focus was placed
on CRI-O’s interaction with the OCI? runtime to enforce these restrictions and on any de-
viations from Kubernetes’ default capability profiles or PodSecurity standards that could
expose the host to elevated privilege operations.

5. The state of fuzzing integration within CRI-O was evaluated. It was confirmed that fuzzing
is actively performed under the CNCF’s OSS-Fuzz initiative, primarily maintained by Ada-
Logics. However, the current fuzzing targets lack dedicated or manually curated seed cor-
pora, limiting initial input diversity and slowing coverage expansion during early fuzzing
runs. Although OSS-Fuzz automatically preserves and reuses crash-inducing inputs and
evolved corpora over time, the absence of representative seed corpora reduces the effi-
ciency of localized or short-term fuzzing efforts. Incorporating realistic configuration files,
CRI request payloads, and serialized runtime objects as initial corpora would significantly
improve fuzzing depth and coverage efficiency.

6. The CRI server implementation was tested for potential DoS vectors resembling CVE-2022-
170810, This included evaluating all data originating from unprivileged containers that is
processed within the runtime environment. The original CVE! exploited an unchecked
logging mechanism in the ExecSync endpoint to exhaust runtime memory. During this test,
similar attack surfaces - such as writing to the termination-log file or altering container
status responses - were assessed. Exploitation was deemed infeasible, as all relevant read
operations were properly bounded by length.

7. Additional potential DoS vectors via CRI server requests were also investigated but were
found to be unexploitable.

8. The process of container sandbox creation underwent detailed manual code review to en-
sure clean and correct value handling, eliminating opportunities for injection or parameter
confusion. The parsing and validation of configuration parameters were examined thor-
oughly. It was observed that CRI-O performs only minimal validation of parsed values, plac-
ing reliance on downstream components to defend against malformed or malicious inputs.

9. As CRI-O supports user and group ID mapping limitations, these mechanisms were ana-
lyzed for robustness. No injection, overflow, underflow, or TOCTOU2 vulnerabilities were
identified.

10. Attempts to escalate sandbox privileges via additional container annotations were success-
fully blocked through a combination of container specification validation and implemented

90pen Container Initiative
Onttps://nvd.nist.gov/vuln/detail/CVE-2022-1708
11Common Vulnerabilities and Exposures
12Time of Check Time of Use

X41 D-Sec GmbH - CCBY-SA 4.0 License Page 10 of 23

https://nvd.nist.gov/vuln/detail/CVE-2022-1708

Source Code Audit on CRI-O Runtime OSTIF

filtering logic. During this evaluation, X41 revisited the previously disclosed CVE-2022-
08111314 given the continued use of the pinns utility. It was determined that the current
approach - constructing individual key/value pairs for each sysctl parameter and passing
them to pinns using Go's exec.Command functionality - provides significantly stronger re-
silience against malicious input compared to the former implementation.

11. In addition to container creation, the restoration process from disk was assessed for poten-
tial sandbox escape or privilege escalation vectors. The CRI-O runtime reads values directly
from stored configuration files, such as the CNI namespace, without validating them for cor-
rectness, which could potentially introduce issues under certain circumstances.

12. Theimage downloading and verification processes were reviewed for proper validation and
strict error handling. CRI-O leverages functionality from the containers/image package, re-
sulting in a relatively lightweight internal implementation. Security and integrity assurances
for pulled images are therefore delegated to this upstream package.

X41 recommends promptly updating the runc dependency to the latest secure version and imple-
menting additional validation checks to prevent the restoration of invalid sandbox configurations
from disk.

Suggestions for next steps in securing this scope can be found in section 3.4.

3.4 Recommended Further Tests

As noted earlier, the current fuzzing effort for CRI-O operates without component-specific seed
corpora, resulting in limited initial input diversity and reduced coverage growth during early iter-
ations. The absence of well-structured seeds forces the fuzzers to rely heavily on mutation from
trivial or autogenerated inputs, which slows discovery of deeper code paths and increases over-
all time to meaningful coverage. Introducing targeted, high-quality seed corpora, derived from
real-world workloads, substantially improves exploration depth, accelerates coverage expansion,
and reduces the likelihood of long plateaus during the fuzzing campaign.

Bhttps://nvd.nist.gov/vuln/detail/CVE-2022-0811
https://www.crowdstrike.com/en-us/blog/cr8escape-new-vulnerability-discovered-in-cri-o-contain
er-engine-cve-2022-0811/

X41 D-Sec GmbH - CCBY-SA 4.0 License Page 11 of 23

https://nvd.nist.gov/vuln/detail/CVE-2022-0811
https://www.crowdstrike.com/en-us/blog/cr8escape-new-vulnerability-discovered-in-cri-o-container-engine-cve-2022-0811/
https://www.crowdstrike.com/en-us/blog/cr8escape-new-vulnerability-discovered-in-cri-o-container-engine-cve-2022-0811/

Source Code Audit on CRI-O Runtime OSTIF

4 Rating Methodology

Security vulnerabilities are given a purely technical rating by the testers when they are discovered
during a test. Business factors and financial risks for OSTIF are beyond the scope of a penetration
test, which focuses entirely on technical factors. However, technical results from a penetration
test may be an integral part of a general risk assessment. A penetration test is based on a limited
time frame and only covers vulnerabilities and security issues which have been found in the given
time, there is no claim for full coverage.

The CVSS! is used to score all findings relevant to security. The resulting CVSS score is mapped
to qualitative ratings as shown below.

4.1 CVSS

Testers rate all security-relevant findings using the CVSS industry standard version 4.

Vulnerabilities scored with CVSS get a numeric value based on several metrics ranging from 0.0
(least worst) to 10.0 (worst).

The score captures different factors that express the impact and the ease of exploitation of a
vulnerability among other factors. For a detailed description of how the scores are calculated,
please see the CVSS version 4.0 specification.?

The metrics used to calculate the final score are grouped into three different categories.

1Common Vulnerability Scoring System
2https://wuw.first.org/cvss/v4.0/specification-document

X41 D-Sec GmbH - CCBY-SA 4.0 License Page 12 of 23

https://www.first.org/cvss/v4.0/specification-document

Source Code Audit on CRI-O Runtime OSTIF

The Base Metric Group represents the intrinsic and fundamental characteristics of a vulnerability
that are constant over time and user environments. It captures the following metrics:

e Attack Vector (AV)

e Attack Complexity (AC)

e Attack Requirements (AT)

e Privileges Required (PR)

e User Interaction (Ul)

e Vulnerable/Subsequent System Confidentiality (VC/SC)
¢ Vulnerable/Subsequent System Integrity (V1/Sl)

o Vulnerable/Subsequent System Availability (VA/SA)

The Threat Metric Group represents the current state of exploit techniques and the availability of
proof of concepts. It captures the following metric:

e Exploit Maturity (E)

The Environmental Metric Group represents the characteristics of a vulnerability that are relevant
and unique to a particular user’s environment. It includes the following metrics:

¢ Confidentiality Requirement (CR)

e Integrity Requirement (IR)

e Availability Requirement (AR)

e Modified Attack Vector (MAV)

¢ Modified Attack Complexity (MAC)

e Modified Attack Requirements (MAC)

e Modified Privileges Required (MPR)

e Modified User Interaction (MUI)

¢ Modified Vulnerable System Confidentiality (MVC)
e Modified Vulnerable System Integrity (MVI)

¢ Modified Vulnerable System Availability (MVA)

¢ Modified Subsequent System Confidentiality (MSC)
¢ Modified Subsequent System Integrity (MSI)

e Modified Subsequent System Availability (MSA)

A CVSS vector defines a specific set of metrics and their values, and it can be used to reproduce
and assess a given score. It is rendered as a string that exactly reproduces a score.

X41 D-Sec GmbH - CCBY-SA 4.0 License Page 13 of 23

Source Code Audit on CRI-O Runtime OSTIF

For example, the vector CvSS:4.0/AV:N/AC:H/AT:N/PR:L/UI:A/VC:H/VI:L/VA:N/SC:N/SI:N/SA:N
defines a base score metric with the following parameters:

o Attack Vector: Network

o Attack Complexity: High

o Attack Requirements: None

e Privileges Required: Low

o User Interaction: Active

e Vulnerable System Confidentiality: High
e Vulnerable System Integrity: Low

e Vulnerable System Availability: None

e Subsequent System Confidentiality: None
e Subsequent System Integrity: None

e Subsequent System Availability: None

In this example, a network-based attacker performs a complex attack after gaining access to
some privileges, by tricking a user into performing some actions. This allows the attacker to read
confidential data and change some parts of that data.

The detailed scores are the following:

Metric Score
Exploitability Medium
Complexity Medium

Vulnerable system Medium
Subsequent system Low
Exploitation High

CVSS Score 5.8 (Medium)

CVSS vectors can be automatically parsed to recreate the score, for example, with the CVSS
calculator provided by FIRST, the organization behind CVSS: https://www.first.org/cvss/c
alculator/4.0#CVSS:4.0/AV:N/AC:H/AT:N/PR:L/UI:A/VC:H/VI:L/VA:N/SC:N/SI:N/SA:N.

X41 D-Sec GmbH - CCBY-SA 4.0 License Page 14 of 23

https://www.first.org/cvss/calculator/4.0#CVSS:4.0/AV:N/AC:H/AT:N/PR:L/UI:A/VC:H/VI:L/VA:N/SC:N/SI:N/SA:N
https://www.first.org/cvss/calculator/4.0#CVSS:4.0/AV:N/AC:H/AT:N/PR:L/UI:A/VC:H/VI:L/VA:N/SC:N/SI:N/SA:N

Source Code Audit on CRI-O Runtime OSTIF

4.2 Severity Mapping

To help in understanding the results of a test, numeric CVSS scores are mapped to qualitative
ratings as follows:

Severity Rating CVSS Score

NONE 0.0
LOW 0.1-3.9
MEDIUM 4.0-6.9

~ HIGH 7.0-8.9
9.0-10.0

4.3 Common Weakness Enumeration

The CWES is a set of software weaknesses that allows vulnerabilities and weaknesses in software
to be categorized. If applicable, X41 gives a CWE ID for each vulnerability that is discovered
during a test.

CWE is a very powerful method for categorizing a vulnerability. It gives general descriptions and
solution advice on recurring vulnerability types. CWE is developed by MITRE.# More information
can be found on the CWE site at https://cwe.mitre.org/.

3Common Weakness Enumeration
“https://www.mitre.org

X41 D-Sec GmbH - CCBY-SA 4.0 License Page 15 of 23

https://cwe.mitre.org/
https://www.mitre.org

Source Code Audit on CRI-O Runtime OSTIF

5 Results

This chapter describes the results of this test.

5.1 Findings

No observation with a security impact were made during the audit.

5.2 Informational Notes

The following observations do not have a direct security impact, but are related to security hard-
ening, affect functionality, or other topics that are not directly related to security. X41 recom-
mends to mitigate these issues as well, because they often become exploitable in the future.
Doing so will strengthen the security of the system and is recommended for defense in depth.

5.2.1 CRIO-CR-25-100: Incomplete config validation on sandbox restoration

Component: source/cri-o/internal/lib/container_server.go:295

5.2.1.1 Description

While auditing sandbox creation and restoration, X41 discovered that while it is ensured a sand-
box’s namespace is not empty during creation, the same validation is lacking for restoration.
Restoring a sandbox with an empty namespace would bypass namespace-specific signature poli-
cies and could also bypass namespace-specific network policies.

X41 D-Sec GmbH - CCBY-SA 4.0 License Page 16 of 23

20

21

22

23

24

26

27

28

29

30

31

32

33

34

35

36

37

Source Code Audit on CRI-O Runtime OSTIF

Modifying the namespace via its config file requires access to the control plane, which would
allow much more serious attacks. This means the direct security impact is negligible, as the con-
figuration value is handled cleanly during file creation. However, in the interest of defensive
programming, additional config validation should occur during sandbox restoration to ensure no
vulnerable sandboxes are deployed in case of corrupt config files.

Listing 5.1 shows the sandbox restoration process, and how annotations are directly loaded from
the unmarshalled JSON®. Some intermediate code is excluded for layout reasons, but no verifi-
cation happens in the removed code.

// LoadSandboz loads a sandboz from the disk into the sandboz store.
func (¢ *ContainerServer) LoadSandbox(ctx context.Context, id string) (sb *sandbox.Sandbox,
— retErr error) {

ctx, span := log.StartSpan(ctx)

defer span.End()

config, err := c.store.FromContainerDirectory(id, "config.json")

if err != nil {

return nil, err

var m rspec.Spec

if err := json.Unmarshal(config, &m); err !'= nil {
return nil, fmt.Errorf("error ummarshalling sandbox spec: %w", err)

}

labels := make(map[stringlstring)

if err := json.Unmarshal([]byte(m.Annotations[annotations.Labels]), &labels); err !'= nil {
return nil, fmt.Errorf("error unmarshalling %s annotation: %w", annotations.Labels, err)

¥

/7.

sbox.SetLogDir (filepath.Dir (m.Annotations[annotations.LogPath]))
sbox.SetContainers (memorystore.New[*oci.Container] ())
sbox.SetShmPath (m.Annotations [annotations.ShmPath])
sbox.SetCgroupParent (m.Annotations [annotations.CgroupParent])
sbox.SetPrivileged(privileged)
sbox.SetRuntimeHandler (m.Annotations [annotations.RuntimeHandler])
sbox.SetResolvPath(m.Annotations[annotations.ResolvPath])
sbox.SetHostname (m. Annotations [annotations.HostName])
sbox.SetPortMappings (portMappings)

sbox.SetHostNetwork (hostNetwork)
sbox.SetUsernsMode (m. Annotations [annotations.UsernsModeAnnotation])
sbox.SetPodLinux0Overhead (&podLinux0verhead)
sbox.SetPodLinuxResources (&podLinuxResources)
sbox.SetHostnamePath(m.Annotations [annotations.HostnamePath])

sbox.SetNamespaceOptions (&nsOpts)

1JavaScript Object Notation

X41 D-Sec GmbH - CCBY-SA 4.0 License Page 17 of 23

38

39

40

41

Source Code Audit on CRI-O Runtime OSTIF

sbox.SetSeccompProfilePath(spp)

sbox.SetCreatedAt (created)

sbox.SetNamespace (m.Annotations[annotations.Namespace])
sbox.SetKubeName (m. Annotations [annotations.KubeName])

Listing 5.1: Sandbox Loading and Lack of Namespace Validation

5.2.1.2 Solution Advice

X41 recommends adding verification logic to the sandbox restoration process, to ensure config-
uration values have not been corrupted in a way that would leave a sandbox insecure.

X41 D-Sec GmbH - CCBY-SA 4.0 License Page 18 of 23

Source Code Audit on CRI-O Runtime OSTIF

5.2.2 CRIO-CR-25-101: Outdated and vulnerable dependencies

Component: source/cri-o/go.mod

5.2.2.1 Description

During the security assessment, it was identified that the CRI-O runtime relies on the runc con-
tainer runtime. However, the deployed version of runc was determined to be outdated and ex-
posed to several known security vulnerabilities. The version details referenced here reflect the
state observed at the time of testing. Given that runc serves as a foundational component of con-
tainer execution and directly underpins CRI-O, any vulnerabilities within this dependency pose
a significant and immediate threat to the overall security posture of the containerized environ-
ment. Successful exploitation could enable attackers to break out of container isolation, execute
arbitrary code on the host, or compromise container workloads. Therefore, ensuring that the
runc runtime remains securely configured and regularly updated is essential to preserving the
integrity, isolation, and trustworthiness of the container infrastructure.

Affected Component CVE CVSS Rating
github.com/containerd/containerd@v1.7.28 CVE-2024-25621 HIGH
github.com/containerd/containerd@v1.7.28 CVE-2025-64329 MEDIUM
github.com/opencontainers/runc@v1.3.2 CVE-2025-31133 HIGH
github.com/opencontainers/runc@v1.3.2 CVE-2025-52565 HIGH
github.com/opencontainers/runc@vi1.3.2 CVE-2025-52881 HIGH
github.com/opencontainers/selinux@v1.12.0 CVE-2025-52881 HIGH

Notably, the testing team was unable to comprehensively prove any potential impact during the
limited time frame granted for this review. As such, the wider implications remain unknown at
this point and should be subjected to internal research at the earliest possible convenience for
the in-house team.

It must also be noted that, at the time this report was written, no fix was available for the library
github.com/opencontainers/selinux.

Generally speaking, the provision of robust supply chain security can be considerably challenging
to provide to an optimal standard. Oftentimes, an easy or comprehensive solution cannot be
offered, while the results and efficacy of the selected protection framework can vary depending
on the integrated version of the deployed libraries.

X41 D-Sec GmbH - CCBY-SA 4.0 License Page 19 of 23

Source Code Audit on CRI-O Runtime OSTIF

5.2.2.2 Solution Advice

To mitigate the identified issues effectively, X41 recommends upgrading the CRI-O runtime and
all associated dependencies, particularly runc, to the latest stable versions available from trusted
upstream sources. Furthermore, it is advised to establish a structured update and verification
policy within the container orchestration environment to ensure that CRI-O and its underlying
components remain current. Implementing such a process will help ensure that the deployment
benefits from timely security patches, reducing exposure to known vulnerabilities and strength-
ening the overall resilience of the container runtime stack.

X41 D-Sec GmbH - CCBY-SA 4.0 License Page 20 of 23

Source Code Audit on CRI-O Runtime OSTIF

6 About OSTIF

The Open Source Technology Improvement Fund (OSTIF) is dedicated to resourcing and manag-
ing security engagements for open source software projects through partnerships with corporate,
government, and non-profit donors. We bridge the gap between resources and security out-
comes, while supporting and championing the open source community whose efforts underpin
our digital landscape.

Over the past ten years, OSTIF has been responsible for the discovery of over 800 vulnerabilities,
(121 of those being Critical/High), over 13,000 hours of security work, and millions of dollars
raised for open source security. Maximizing output and security outcomes while minimizing labor
and cost for projects and funders has resulted in partnerships with multi-billion dollar companies,
top open source foundations, government organizations, and respected individuals in the space.
Most importantly, we've helped over 120 projects and counting improve their security posture.

Our directive is to support and enrich the open source community through providing public-
facing security audits, educational resources, meetups, tooling, and advice. OSTIF’s experience
positions us to be able to share knowledge of auditing with maintainers, developers, foundations,
and the community to further secure our infrastructure in a sustainable manner.

We are a small team working out of Chicago, lllinois. Our website is ostif.org. You can follow
us on social media to keep up to date on audits, conferences, meetups, and opportunities with
OSTIF, or feel free to reach out directly at contact@ostif.org or our GitHub.

Derek Zimmer, Executive Director

Amir Montazery, Managing Director

Helen Woeste, Communications and Community Manager
Tom Welter, Project Manager

X41 D-Sec GmbH - CCBY-SA 4.0 License Page 21 of 23

ostif.org
contactus@ostif.org
mailto:derek@ostif.org
mailto:amir@ostif.org
mailto:helen@ostif.org
mailto:tom@ostif.org

Source Code Audit on CRI-O Runtime OSTIF

7 About X41 D-Sec GmbH

X41 D-Sec GmbH is an expert provider for application security and penetration testing services.
Having extensive industry experience and expertise in the area of information security, a strong
core security team of world-class security experts enables X41 D-Sec GmbH to perform premium
security services.

X41 has the following references that show their experience in the field:

e Source code audit of ISC BIND9 DNS server?

¢ Source code audit of the Git source code version control system?
e Review of the Mozilla Firefox updater®

e X41 Browser Security White Paper®

e Review of Cryptographic Protocols (Wire)®

e Identification of flaws in Fax Machines®”

e Smartcard Stack Fuzzing®

The testers at X41 have extensive experience with penetration testing and red teaming exercises
in complex environments. This includes enterprise environments with thousands of users and
vendor infrastructures such as the Mozilla Firefox Updater (Balrog).

Fields of expertise in the area of application security encompass security-centered code reviews,
binary reverse-engineering and vulnerability-discovery. Custom research and IT security consult-
ing, as well as support services, are the core competencies of X41. The team has a strong techni-
cal background and performs security reviews of complex and high-profile applications such as
Google Chrome and Microsoft Edge web browsers.

X41 D-Sec GmbH can be reached via https://x41-dsec.de or mailto:info@x41-dsec.de.

Ihttps://x41-dsec.de/news/security/research/source-code-audit/2024/02/13/bind9-security-audit/
2https://x41-dsec.de/security/research/news/2023/01/17/git-security-audit-ostif/
Shttps://blog.mozilla.org/security/2018/10/09/trusting-the-delivery-of-firefox-updates/
4https://browser-security.x41—dsec.de/X41—Browser-Security—White-Paper.pdf
Shttps://www.x41-dsec.de/reports/Kudelski-X41-Wire-Report-phasel-20170208.pdf
Shttps://www.x41-dsec.de/lab/blog/fax/

"https://2018.zeronights.ru/en/reports/zero-fax-given/
8https://www.x41-dsec.de/lab/blog/smartcards/

X41 D-Sec GmbH - CCBY-SA 4.0 License Page 22 of 23

https://x41-dsec.de
mailto:info@x41-dsec.de
https://x41-dsec.de/news/security/research/source-code-audit/2024/02/13/bind9-security-audit/
https://x41-dsec.de/security/research/news/2023/01/17/git-security-audit-ostif/
https://blog.mozilla.org/security/2018/10/09/trusting-the-delivery-of-firefox-updates/
https://browser-security.x41-dsec.de/X41-Browser-Security-White-Paper.pdf
https://www.x41-dsec.de/reports/Kudelski-X41-Wire-Report-phase1-20170208.pdf
https://www.x41-dsec.de/lab/blog/fax/
https://2018.zeronights.ru/en/reports/zero-fax-given/
https://www.x41-dsec.de/lab/blog/smartcards/

Source Code Audit on CRI-O Runtime OSTIF

Acronyms

CNI Container Network Interface o 9
CRI Container Runtime Interface, 9
CVE Common Vulnerabilities and Exposures 10
CVSS Common Vulnerability Scoring System 12
CWE Common Weakness Enumeration 15
DNS Domain Name System e 9
DoS Denial of Service e 7
JSON JavaScript Object Notation 17
OCI Open Container Initiative 10
PID ProcessID e 7
TOCTOU Time of Check Timeof Use 10

X41 D-Sec GmbH - CCBY-SA 4.0 License Page 23 of 23

	License
	Executive Summary
	Introduction
	Methodology
	Scope
	Coverage
	Recommended Further Tests

	Rating Methodology
	CVSS
	Severity Mapping
	Common Weakness Enumeration

	Results
	Findings
	Informational Notes
	CRIO-CR-25-100
	CRIO-CR-25-101

	About OSTIF
	About X41 D-Sec GmbH

