
Source Code Audit on The Update Framework
for Open Source Technology Improvement Fund (OSTIF)

Final Report and Management Summary

2022-09-09

X41 D-SEC GmbH
Krefelder Str. 123
D-52070 Aachen

Amtsgericht Aachen: HRB19989
https://x41-dsec.de/

info@x41-dsec.de

Organized by the Open Source Technology Improvement Fund

https://x41-dsec.de/
info@x41-dsec.de

Source Code Audit on The Update Framework for Open Source Technology Improvement Fund (OSTIF)

Revision Date Change Author(s)

1 2022-08-25 Final Report E. Sesterhenn, L. Gommans, N. Abel,
Y. Klawohn

2 2022-09-09 Set status to public L. Gommans

X41 D-Sec GmbH PUBLIC Page 1 of 29

Source Code Audit on The Update Framework for Open Source Technology Improvement Fund (OSTIF)

Contents

1 Executive Summary 4

2 Introduction 6
2.1 Scope . 6
2.2 Findings Overview . 7
2.3 Coverage . 7
2.4 Recommended Further Tests . 8

3 Rating Methodology for Security Vulnerabilities 9
3.1 Common Weakness Enumeration . 10

4 Results 11
4.1 Findings . 12
4.2 Informational Notes . 19

5 About X41 D-Sec GmbH 28

X41 D-Sec GmbH PUBLIC Page 2 of 29

Source Code Audit on The Update Framework for Open Source Technology Improvement Fund (OSTIF)

Dashboard

Target
Customer Open Source Technology Improvement Fund (OSTIF)
Name The Update Framework
Type Source Code and Specification
Version v2.0.0 (7ada2af384442f1c3775a4bcbd9f33270c1c8fa0)
Engagement
Type Source Code Audit
Consultants 4: Eric Sesterhenn, Luc Gommans, Niklas Abel and Yasar

Klawohn
Engagement Effort 18 person-days, 2022-08-08 to 2022-08-19
Total issues found 4

0 1 2 3 4 5 6 7 8

None - 8

Low - 3

Medium - 1

High - 0

Critical - 0

CWE-345 (2)

CWE-732 (1)

CWE-400 (1)

Figure 1: Issue Overview (l: Severity, r: CWE Distribution)

X41 D-Sec GmbH PUBLIC Page 3 of 29

mailto:eric.sesterhenn@x41-dsec.de
mailto:luc.gommans@x41-dsec.de
mailto:niklas.abel@x41-dsec.de
mailto:yasar.klawohn@x41-dsec.de
mailto:yasar.klawohn@x41-dsec.de

Source Code Audit on The Update Framework for Open Source Technology Improvement Fund (OSTIF)

1 Executive Summary

In August 2022, X41D-Sec GmbH performed a source code audit against The Update Framework
(TUF) to identify vulnerabilities and weaknesses in the source code and specification. The test
was organized by the Open Source Technology Improvement Fund1.
A total of four vulnerabilities were discovered during the audit by X41. Nonewere rated as having
a critical or high severity, one as medium, and three as low. Additionally, eight issues without a
direct security impact were identified.

Low - 3

Medium - 1

Figure 1.1: Issues and Severity
The Update Framework is a specification with a reference implementation designed to provide
developers with a framework for delivering updates to their applications securely. Vulnerabili-
ties in the specification or an implementation could allow an attacker to take over the update
mechanism of many other projects, deliver malicious updates, and gain control of the targeted
systems.

1 https://ostif.org

X41 D-Sec GmbH PUBLIC Page 4 of 29

https://ostif.org

Source Code Audit on The Update Framework for Open Source Technology Improvement Fund (OSTIF)

In a source code audit, the testers receive all available information about the target. The test was
performed by four experienced security experts between 2022-08-08 and 2022-08-19.
The most severe issue discovered pertains to file permissions set on private key files when using
the basic usage instructions. An attacker who already has access to the local system as another
user could read these files, for example as a tenant on a shared server system, and use the keys
to sign false updates.
Another weakness exists in Python’s JSON parser, where an attacker could supply a document
at the size limit and trigger the parser to hang for a certain amount of time. The time depends on
the size limit and CPU speed; by default, the time is on the order of a few minutes. This might
frustrate users and cause them to abort the update process, leaving them on an old release.
Several other improvements were identified to improve defense-in-depth and reduce ambiguity
in the specification.
X41 recommends to apply further hardening to the code and to evaluate supply chain attacks
risks in further tests. Such attacks could, for example, occur due to a compromise of the GitHub
repository, which is considered fully trusted by the project team.
Overall, the project shows a high maturity in terms of security. Having a specification as a human-
readable description of what the code should do makes it possible to better reason about and
more easily verify the code.

X41 D-Sec GmbH PUBLIC Page 5 of 29

Source Code Audit on The Update Framework for Open Source Technology Improvement Fund (OSTIF)

2 Introduction

X41 reviewed The Update Framework, consisting of a specification1 and a Python reference im-
plementation. The system allows developers to securely manage updates of software and to
minimize the impact on users in the event of a supply chain security event.
It is intended to be widely used, which would make it an important target for any supply chain
attacks on other projects.

2.1 Scope

The main scope and focus of this work is:
• The implementation of the detailed client workflow of the TUF specification2,
• the safety of the ngclient library3
• and the Metadata API4.

Excluded from the scope are dependencies. These consist of the well-known requests library,
as well as a package called securesystemslib which is developed by an overlapping set of de-
velopers.
A particular concern expressed by the developers is the JSON5 parsing, since this is a relatively
complex operation and operates on untrusted input from the network.

1 https://theupdateframework.github.io/specification/v1.0.30/index.html2 https://theupdateframework.github.io/specification/v1.0.30/index.html3 https://theupdateframework.readthedocs.io/en/latest/api/tuf.ngclient.html4 https://theupdateframework.readthedocs.io/en/latest/api/tuf.api.html5 JavaScript Object Notation

X41 D-Sec GmbH PUBLIC Page 6 of 29

https://theupdateframework.github.io/specification/v1.0.30/index.html
https://theupdateframework.github.io/specification/v1.0.30/index.html
https://theupdateframework.readthedocs.io/en/latest/api/tuf.ngclient.html
https://theupdateframework.readthedocs.io/en/latest/api/tuf.api.html

Source Code Audit on The Update Framework for Open Source Technology Improvement Fund (OSTIF)

2.2 Findings Overview

DESCRIPTION SEVERITY ID REF
Private Key World-Readable MEDIUM TUF-CR-22-01 4.1.1
Shallow Build Artifact Verification LOW TUF-CR-22-02 4.1.2
Quadratic Complexity in JSON Number Parsing LOW TUF-CR-22-03 4.1.3
Release Signatures Add No Protection LOW TUF-CR-22-04 4.1.4
File Not Closed Or Flushed NONE TUF-CR-22-100 4.2.1
GitHub 2FA Guidelines NONE TUF-CR-22-101 4.2.2
PyPI 2FA Guidelines NONE TUF-CR-22-102 4.2.3
Permissive Verification NONE TUF-CR-22-103 4.2.4
Update Cycle Ambiguity in Specification NONE TUF-CR-22-104 4.2.5
Cleanup Procedure Not Specified NONE TUF-CR-22-105 4.2.6
Unversioned Cryptographic Primitives NONE TUF-CR-22-106 4.2.7
Branch Protection Security NONE TUF-CR-22-107 4.2.8

Table 2.1: Security-Relevant Findings

2.3 Coverage

A security assessment attempts to find the most important or sometimes as many of the existing
problems as possible, though it is practically never possible to rule out the possibility of additional
weaknesses being found in the future.
A manual approach for code review is used by X41. This process is supported by tools such as
static code analyzers and industry standard security tools.
The time allocated to X41 for this code review was sufficient to yield a reasonable coverage of
the given scope. Covered topics include:

• JSON parsing (identified by the developers as a point of concern)
• General Python coding problems, using various static analysis tools
• ‘Getting started’ documentation
• File system permissions
• Third parties which the project depends on (both software and services) and how these

risks can be reduced
• Release verification
• Setting invalid threshold values to manipulate the signature validation

X41 D-Sec GmbH PUBLIC Page 7 of 29

Source Code Audit on The Update Framework for Open Source Technology Improvement Fund (OSTIF)

• Cryptographic primitives used
• Practical testing of computational complexity, download size limits, and download time lim-

its
Suggestions for next steps in securing this scope can be found in section 2.4.

2.4 Recommended Further Tests

It is recommended to do a source code audit on the parts that TUF uses from the dependency
securesystemslib. Supply chain vulnerabilities here may cascade to TUF and hardening advice
provided in this report could also be applied to the dependency’s project settings.

X41 D-Sec GmbH PUBLIC Page 8 of 29

Source Code Audit on The Update Framework for Open Source Technology Improvement Fund (OSTIF)

3 Rating Methodology for Security
Vulnerabilities

Security vulnerabilities are given a purely technical rating by the testers as they are discovered
during the test. Business factors and financial risks for Open Source Technology Improvement
Fund (OSTIF) are beyond the scope of a penetration test which focuses entirely on technical
factors. Yet technical results from a penetration test may be an integral part of a general risk
assessment. A penetration test is based on a limited time frame and only covers vulnerabilities
and security issues which have been found in the given time, there is no claim for full coverage.
In total, five different ratings exist, which are as follows:

Severity Rating
None
Low

Medium
High
Critical

A low rating indicates that the vulnerability is either very hard for an attacker to exploit due
to special circumstances, or that the impact of exploitation is limited, whereas findings with a
medium rating are more likely to be exploited or have a higher impact. High and critical ratings
are assigned when the testers deem the prerequisites realistic or trivial and the impact significant
or very significant.
Findings with the rating ‘none’ are called side findings and are related to security hardening, af-
fect functionality, or other topics that are not directly related to security. X41 recommends to
mitigate these issues as well, because they often become exploitable in the future. Doing so will
strengthen the security of the system and is recommended for defense in depth.

X41 D-Sec GmbH PUBLIC Page 9 of 29

Source Code Audit on The Update Framework for Open Source Technology Improvement Fund (OSTIF)

3.1 CommonWeakness Enumeration

The CWE1 is a set of software weaknesses that allows the categorization of vulnerabilities and
weaknesses in software. If applicable, X41 provides the CWE-ID for each vulnerability that is
discovered during a test.
CWE is a very powerful method to categorize a vulnerability and to give general descriptions and
solution advice on recurring vulnerability types. CWE is developed byMITRE2. More information
can be found on the CWE website at https://cwe.mitre.org/.

1 Common Weakness Enumeration2 https://www.mitre.org

X41 D-Sec GmbH PUBLIC Page 10 of 29

https://cwe.mitre.org/
https://www.mitre.org

Source Code Audit on The Update Framework for Open Source Technology Improvement Fund (OSTIF)

4 Results

This chapter describes the results of this test. The security-relevant findings are documented in
Section 4.1. Additionally, findings without a direct security impact are documented in Section 4.2.

X41 D-Sec GmbH PUBLIC Page 11 of 29

Source Code Audit on The Update Framework for Open Source Technology Improvement Fund (OSTIF)

4.1 Findings

The following subsections describe findings with a direct security impact that were discovered
during the test.

4.1.1 TUF-CR-22-01: Private Key World-Readable

Severity: MEDIUM
CWE: 732 – Incorrect Permission Assignment for Critical Resource
Affected Component: https://gist.github.com/lukpueh/40e19dd54ab0c020954ad8236ec4e953

4.1.1.1 Description

The usage example at https://gist.github.com/lukpueh/40e19dd54ab0c020954ad8236ec4e
953 generates the private key file without setting its file permissions.
By default, the securesystemslib.interface.generate_and_write_unencrypted_ed25519_keypair()
function creates files which are readable for every user on the system, so that all users and ser-
vices can read the private key information of the local system. The code is shown in listing 4.1.
The default file permissions depend on the umask which is set to “world readable” on most Linux
distributions.

1 # Create one key pair per role

2 # NOTE: For some roles, e.g. root, usually a threshold of multiple signing keys is used

3 for role_name in roles.keys():

4 path_pub = (KEY_DIR / role_name).as_posix()

5 path_priv = generate_and_write_unencrypted_ed25519_keypair(path_pub)

6 keys[role_name] = import_ed25519_privatekey_from_file(path_priv)

Listing 4.1: Private Key Generation Without Setting File Permissions

4.1.1.2 Solution Advice

The generate_and_write_unencrypted_ed25519_keypair() function does not allow to set file per-
missions for the generated files. X41 recommends to create empty files for the private keys and

X41 D-Sec GmbH PUBLIC Page 12 of 29

https://cwe.mitre.org/data/definitions/732.html
https://gist.github.com/lukpueh/40e19dd54ab0c020954ad8236ec4e953
https://gist.github.com/lukpueh/40e19dd54ab0c020954ad8236ec4e953

Source Code Audit on The Update Framework for Open Source Technology Improvement Fund (OSTIF)

set their file permissions prior to generating the keys, setting only read and write permissions for
the file owner.

X41 D-Sec GmbH PUBLIC Page 13 of 29

Source Code Audit on The Update Framework for Open Source Technology Improvement Fund (OSTIF)

4.1.2 TUF-CR-22-02: Shallow Build Artifact Verification

Severity: LOW
CWE: 345 – Insufficient Verification of Data Authenticity
Affected Component: verify_release

4.1.2.1 Description

In the verify_release script, in the root of the repository, the functions verify_github_release() and
verify_pypi_release() only perform a shallow comparison of the directories by using filecmp.dir-
cmp()1.

“[. . .] The dircmp class compares files by doing shallow comparisons as described for
filecmp.cmp(). [. . .]”2

The documentation for filecmp.cmp() is as follows:
“ [. . .] If shallow is true and the os.stat() signatures (file type, size, and modification
time) of both files are identical, the files are taken to be equal.
Otherwise, the files are treated as different if their sizes or contents differ. [. . .]”

The verify_github_release() function is shown in listing 4.2. The relevant parts of verify_github_-
release() and verify_pypi_release() do not differ, which is why the listing of the latter is omitted.
Since only file metadata is compared, inequality of file contents is not detected.

1 def verify_github_release(version: str, compare_dir: str) -> bool:

2 """Verify that given GitHub version artifacts match expected artifacts"""

3 base_url = (

4 f"https://github.com/{GITHUB_ORG}/{GITHUB_PROJECT}/releases/download"

5)

6 tar = f"{PYPI_PROJECT}-{version}.tar.gz"

7 wheel = f"{PYPI_PROJECT}-{version}-py3-none-any.whl"

8 with TemporaryDirectory() as github_dir:

9 for filename in [tar, wheel]:

10 url = f"{base_url}/v{version}/{filename}"

11 response = requests.get(url, stream=True)

12 with open(os.path.join(github_dir, filename), "wb") as f:

13 for data in response.iter_content():

1 https://docs.python.org/3/library/filecmp.html2 https://docs.python.org/3/library/filecmp.html#filecmp.dircmp

X41 D-Sec GmbH PUBLIC Page 14 of 29

https://cwe.mitre.org/data/definitions/345.html
https://docs.python.org/3/library/filecmp.html
https://docs.python.org/3/library/filecmp.html#filecmp.dircmp

Source Code Audit on The Update Framework for Open Source Technology Improvement Fund (OSTIF)

14 f.write(data)

15

16 same = dircmp(github_dir, compare_dir).same_files

17 return sorted(same) == [wheel, tar]

Listing 4.2: Shallow File Verification

4.1.2.2 Solution Advice

X41 recommends to use filecmp.cmp() for file comparisons instead, with the optional shallow
parameter set to False.

X41 D-Sec GmbH PUBLIC Page 15 of 29

Source Code Audit on The Update Framework for Open Source Technology Improvement Fund (OSTIF)

4.1.3 TUF-CR-22-03: Quadratic Complexity in JSON Number Parsing

Severity: LOW
CWE: 400 – Uncontrolled Resource Consumption (’Resource Exhaustion’)
Affected Component: tuf/api/serialization/json.py

4.1.3.1 Description

Parsing numbers in JSON using Python’s built-in json library takes a quadratic amount of time
(the time taken doubles while the input size increases linearly):

Number Size Time taken
1 MiB 3.6 seconds2 MiB 14.1 seconds3 MiB 32.7 seconds4 MiB 57.9 seconds

Table 4.1: Number Size vs. Parsing Time
Note that the same value as string finishes parsing instantly.
An attacker could abuse this property by modifying the update files to include a huge number. Be-
cause the JSON is parsed before signature verification can happen, the attacker needs no signing
keys.
The standard limit for a metadata file is 5 million bytes, coming out at about 2 minutes of CPU3
time on a modern system. Such a value can be included in every JSON file that the client will
download. Memory seems to be constant during this time.
While the project does not aim to run on embedded systems, older systems might experience a
freeze for a good while. The user might try to interrupt the process due to locking up the system
with no apparent progress or clear error message and forego updating. Because the huge number
can be included in an unsigned part of the JSON object, this would not cause any error and the
user (even if they patiently let it run) does not know to sound any alarm.
To reproduce, a JSON file could be modified to include a huge number or this command could be
used:

1 $ time python3 -c 'import json; json.loads("["+("9"*1000*1000*5)+"]")'

2 $ time pypy -c 'import json; json.loads("["+("9"*1000*1000*5)+"]")'

3 Central Processing Unit

X41 D-Sec GmbH PUBLIC Page 16 of 29

https://cwe.mitre.org/data/definitions/400.html

Source Code Audit on The Update Framework for Open Source Technology Improvement Fund (OSTIF)

Listing 4.3: Python Number Parsing

There is no option for the built-in Python deserializer to ignore numbers longer than a reasonable
number of bytes (given that the maximum integer would be a few hundred digits). The GIL is pre-
sumably locked (even a regular Ctrl+C does not stop the progress) so a separate Python-native
thread cannot monitor the parsing duration. Perhaps a regular expression could be constructed
to detect the problem (note that these are also susceptible to denial of service when exponen-
tial backtracking is required), though that seems error-prone. Lowering the maximum document
size comes with inherent trade-offs. Showing a warning to the user before starting the parsing
progress is beyond the scope of the project.

4.1.3.2 Solution Advice

If possible, X41 recommends to investigate why this problem occurs and resolve it in the inter-
preter.

X41 D-Sec GmbH PUBLIC Page 17 of 29

Source Code Audit on The Update Framework for Open Source Technology Improvement Fund (OSTIF)

4.1.4 TUF-CR-22-04: Release Signatures Add No Protection

Severity: LOW
CWE: 345 – Insufficient Verification of Data Authenticity
Affected Component: verify_release

4.1.4.1 Description

The verify_release script does a local build and, if the build metadata is equal to that of GitHub’s
build, creates signature files which can be attached to a release. In principle, verifying the repro-
ducible build locally makes sense. However, the script builds from a fresh git clonewithout any
verification. If the GitHub repository were to be compromised by any vector, the attacker would
also just change the code and the verification would appear successful. The signatures do not
add any protection.
In a discussion with the developers, GitHub is considered fully trusted (i.e., the TUF project does
not attempt to protect from a scenario in which GitHub was compromised).
PyPI can contain signature files, but pip does not have a way to verify this by default4. If commit
signing were to be implemented, users would have to use an alternative client like twine or verify
the releases from GitHub to be sure they got the code as released by the developers.

4.1.4.2 Solution Advice

X41 recommends to either verify releases using commit signing or to not add signatures to re-
leases to prevent a false sense of end-to-end verification.

4 https://security.stackexchange.com/questions/232855/does-pythons-pip-provide-cryptographic-aut
hentication-and-integrity-validation

X41 D-Sec GmbH PUBLIC Page 18 of 29

https://cwe.mitre.org/data/definitions/345.html
https://security.stackexchange.com/questions/232855/does-pythons-pip-provide-cryptographic-authentication-and-integrity-validation
https://security.stackexchange.com/questions/232855/does-pythons-pip-provide-cryptographic-authentication-and-integrity-validation

Source Code Audit on The Update Framework for Open Source Technology Improvement Fund (OSTIF)

4.2 Informational Notes

The following observations do not have a direct security impact, but are related to security harden-
ing, affect functionality, or other topics that are not directly related to security. X41 recommends
to mitigate these issues as well, because they often become exploitable in the future. Doing so
will strengthen the security of the system and is recommended for defense in depth.

4.2.1 TUF-CR-22-100: File Not Closed Or Flushed

Affected Component: tuf/ngclient/updater.py:_persist_metadata()

4.2.1.1 Description

In the function _persist_metadata(), the value of temp_file.name is read before the file is closed
or flushed. This could cause an error because the file may not exist when temp_file.name is
used5. The code is shown in listing 4.4.

1 def _persist_metadata(self, rolename: str, data: bytes) -> None:

2 """Write metadata to disk atomically to avoid data loss."""

3 temp_file_name: Optional[str] = None

4 try:

5 # encode the rolename to avoid issues with e.g. path separators

6 encoded_name = parse.quote(rolename, "")

7 filename = os.path.join(self._dir, f"{encoded_name}.json")

8 with tempfile.NamedTemporaryFile(

9 dir=self._dir, delete=False

10) as temp_file:

11 temp_file_name = temp_file.name

12 temp_file.write(data)

13 os.replace(temp_file.name, filename)

14 except OSError as e:

15 # remove tempfile if we managed to create one,

16 # then let the exception happen

17 if temp_file_name is not None:

18 try:

5 https://registry.semgrep.dev/rule/python.lang.correctness.tempfile.flush.tempfile-without-flu
sh

X41 D-Sec GmbH PUBLIC Page 19 of 29

https://registry.semgrep.dev/rule/python.lang.correctness.tempfile.flush.tempfile-without-flush
https://registry.semgrep.dev/rule/python.lang.correctness.tempfile.flush.tempfile-without-flush

Source Code Audit on The Update Framework for Open Source Technology Improvement Fund (OSTIF)

19 os.remove(temp_file_name)

20 except FileNotFoundError:

21 pass

22 raise e

Listing 4.4: Missing flush() Could Cause Errors

4.2.1.2 Solution Advice

X41 recommends to use flush() before reading temp_file.name.

X41 D-Sec GmbH PUBLIC Page 20 of 29

Source Code Audit on The Update Framework for Open Source Technology Improvement Fund (OSTIF)

4.2.2 TUF-CR-22-101: GitHub 2FA Guidelines

Affected Component: Developer Guidelines

4.2.2.1 Description

There seem to be no guidelines provided for what kind of 2FA6 methods are to be used for GitHub
accountswith privileged access to the repository. GitHub requires the first registered 2FAmethod
to be either SMS7 or TOTP8; only then, a phishing-resistant WebAuthn hardware tokens can be
added (called “Security Keys” in GitHub). These include, for example, YubiKeys, Apple devices
starting with their upcoming operating system updates, or Windows devices supporting “Win-
dows Hello”. One can then habitually log in with WebAuthn instead of the initially added SMS or
TOTP factors.
What makes WebAuthn resistant against phishing is that a solution to a website’s challenge is
scoped to that website’s domain. Say a user is led to e.g. attacker.example.com, which displays
a github.com login form and forwards the real github.com WebAuthn challenge to the user.
Now, even if the user authorizes their WebAuthn device to solve the challenge, the solution
won’t be accepted by github.com, because it would be bound to attacker.example.com9.

4.2.2.2 Solution Advice

Particularly for projects that might be used as part of a supply chain attack, X41 recommends to
provide guidelines to developers for how to secure their GitHub accounts with phishing-resistant
2FA. Hardware tokens should be used at all times and TOTP as a fallback when all hardware
tokens are lost. Notably, the fallback should not be used if a (potential phishing) page asks for it.

6 Two Factor Authentication7 Short Message Service8 Time-based One-Time Password9 https://community.ibm.com/community/user/security/blogs/shane-weeden1/2021/12/08/what-makes-f
ido-and-webauthn-phishing-resistent

X41 D-Sec GmbH PUBLIC Page 21 of 29

https://community.ibm.com/community/user/security/blogs/shane-weeden1/2021/12/08/what-makes-fido-and-webauthn-phishing-resistent
https://community.ibm.com/community/user/security/blogs/shane-weeden1/2021/12/08/what-makes-fido-and-webauthn-phishing-resistent

Source Code Audit on The Update Framework for Open Source Technology Improvement Fund (OSTIF)

4.2.3 TUF-CR-22-102: PyPI 2FA Guidelines

Affected Component: Developer Guidelines

4.2.3.1 Description

There seem to be no guidelines provided for what kind of 2FA methods are to be used for PyPI.
PyPI allows users to have phishing-resistant WebAuthn hardware tokens including, for example,
YubiKeys, Apple devices starting with their upcoming operating system updates, or Windows
devices supporting “Windows Hello”.
What makes WebAuthn resistant against phishing is that a solution to a website’s challenge is
scoped to that website’s domain. Say a user is led to e.g. attacker.example.com, which displays
a github.com login form and forwards the real github.comWebAuthn challenge to the user. Now,
even if the user authorizes their WebAuthn device to solve the challenge, the solution won’t be
accepted by github.com, because it would be bound to attacker.example.com10.

4.2.3.2 Solution Advice

Particularly for projects that might be used as part of a supply chain attack, X41 recommends to
provide guidelines to developers for how to secure their PyPI accounts with phishing-resistant
2FA.

10 https://community.ibm.com/community/user/security/blogs/shane-weeden1/2021/12/08/what-makes-f
ido-and-webauthn-phishing-resistent

X41 D-Sec GmbH PUBLIC Page 22 of 29

https://community.ibm.com/community/user/security/blogs/shane-weeden1/2021/12/08/what-makes-fido-and-webauthn-phishing-resistent
https://community.ibm.com/community/user/security/blogs/shane-weeden1/2021/12/08/what-makes-fido-and-webauthn-phishing-resistent

Source Code Audit on The Update Framework for Open Source Technology Improvement Fund (OSTIF)

4.2.4 TUF-CR-22-103: Permissive Verification

Affected Component: tuf/api/metadata.py

4.2.4.1 Description

The JSON data is canonicalized before signing or verifying. This means that various formats are
accepted. The values shown in listing 4.5 are all considered equivalent and will verify correctly
without having to re-sign the data.

1 {"example\r":"A"}

2 {"example\r":"B","example\u000d":"A"}

3 {"example\u000d":"A"}

Listing 4.5: Equivalent Formats

At tuf/api/serialization/json.py:JSONSerializer:serialize(), there is a parameter available, validate,
which checks for this problem, but this is not enabled.
The testers did not find a way to exploit this in the project because there are no values in use
where special characters would occur. Because no language other than Python is used in the
scope, there are also no parsing differences from other libraries or languages. One possible sce-
nario would be where a project is adding custom fields to the signed section of an appropriate
metadata file and relying on the string value rather than the parsed value, or treating illegal UTF-8
encoding or Unicode code points differently. Allowing differences in parsing could be risky and
the development team identified the JSON parsing as a particular concern.

4.2.4.2 Solution Advice

X41 recommends to validate whether serialization and subsequent deserialization changes the
values.

X41 D-Sec GmbH PUBLIC Page 23 of 29

Source Code Audit on The Update Framework for Open Source Technology Improvement Fund (OSTIF)

4.2.5 TUF-CR-22-104: Update Cycle Ambiguity in Specification

Affected Component: https://theupdateframework.github.io/specification/

4.2.5.1 Description

Step 5 at https://theupdateframework.github.io/specification/latest/#update-root

specifies (emphasis added):
The version number of the trusted root metadata file (version N) MUST be less than
the version number of the new root metadata file (version N+1). Effectively, this
means checking that the version number signed in the new root metadata file is in-
deed N+1. If the version of the new root metadata file is less than the version of the
trusted metadata file, discard it, abort the update cycle, and report the rollback attack.
In case they are equal, again discard the new root metadata, but proceed the update
cycle with the already trusted root metadata.

Proceeding with the update cycle could mean going to the next step (5.3.6), proceeding with the
next metadata file since the root data is now considered trusted (e.g. proceed to 5.4), or jumping
to another step in the root update procedure (e.g. 5.3.10, since step 5.3.3 indicates that this is
the end of the loop).
The correct option is the latter one, otherwise some checks would be skipped (5.3.10–12) or an
infinite loop would be possible by an unauthenticated attacker. The reference implementation
appears to use the correct next step.

4.2.5.2 Solution Advice

X41 recommends to clarify this point of the specification.

X41 D-Sec GmbH PUBLIC Page 24 of 29

https://theupdateframework.github.io/specification/latest/#update-root

Source Code Audit on The Update Framework for Open Source Technology Improvement Fund (OSTIF)

4.2.6 TUF-CR-22-105: Cleanup Procedure Not Specified

Affected Component: Specification

4.2.6.1 Description

The specification does not define at what point which files can be deleted. While metadata files
are not going to be huge and require cleanup soon after release, users of the specification or
reference implementation might eventually want to clear up space but it is not defined how this
is to be achieved. Deleting all files older than X days might have security implications, as (for
example) the root metadata files should form an unbroken chain.

4.2.6.2 Solution Advice

X41 recommends to specify how long created files are relevant for.

X41 D-Sec GmbH PUBLIC Page 25 of 29

Source Code Audit on The Update Framework for Open Source Technology Improvement Fund (OSTIF)

4.2.7 TUF-CR-22-106: Unversioned Cryptographic Primitives

Affected Component: Specification

4.2.7.1 Description

Several places in the specification require using a specific hashing function without an available
upgrade path. While this is not a problem for the foreseeable future from X41’s perspective
because the primitives are well-chosen, this might place TUF in a similar position as git today
where an upgrade path might be desirable but hard to achieve.
Examples include SHA-256 use for key identifiers11 and path_hash_prefixes 12.
Files do include a SPEC_VERSION 13 which allows changing every aspect of the format completely,
but this seems less flexible than allowing to swap out an individual aspect. Some users may also
wish to enable more experimental algorithms (for example for post-quantum safety) or algorithms
encouraged by bodies other than NIST14 (perhaps for legal compliance in their jurisdictions).

4.2.7.2 Solution Advice

X41 recommends to include versioning, for example by prefixing hasheswith an 1: for the current
(first) version.

11 https://theupdateframework.github.io/specification/latest/#role-keyid12 https://theupdateframework.github.io/specification/latest/#path_hash_prefixes13 https://theupdateframework.github.io/specification/latest/#spec_version14 National Institute of Standards and Technology

X41 D-Sec GmbH PUBLIC Page 26 of 29

https://theupdateframework.github.io/specification/latest/#role-keyid
https://theupdateframework.github.io/specification/latest/#path_hash_prefixes
https://theupdateframework.github.io/specification/latest/#spec_version

Source Code Audit on The Update Framework for Open Source Technology Improvement Fund (OSTIF)

4.2.8 TUF-CR-22-107: Branch Protection Security

Affected Component: GitHub Repository Settings

4.2.8.1 Description

GitHub allows configuring Branch Protection rules. These may seem to be a security feature that
helps protect against an account compromise because it can be configured to require multiple
reviews before being allowed to change the code in the repository. However, these rules can be
bypassed by a repository administrator (also when ‘do not allow bypassing [by admins]’ is enabled)
because the administrator can disable this setting without any confirmation from other repository
collaborators. One can also invite dummy accounts as collaborators and get sign-offs on a pull
request that way, though that would be more visible.
Based on the bypasses known to the testers at the time, it would be possible to use branch
protection rules as security against a single account compromise if the repository administrator
accounts are not in regular use. This way, the setting could not be temporarily disabled and no
dummy collaborators could be invited without gaining access to this locked-away administrator
account.
The TUF repository15 currently has pull requests with at least one review required via branch
protection settings, but not the setting that administrators cannot bypass it.

4.2.8.2 Solution Advice

X41 recommends enabling the ‘Do not allow bypassing the above settings’ setting in the branch
protection settings. Administrators can still bypass this in an emergency by disabling the setting
again. No 2FA prompt seems to be needed for this, making the disabling even faster. The advan-
tage is that collaborators with administrator permissions cannot accidentally commit something
and forget to pass it through the usual review process, as this seems to be the default radio button
selected when changing files using the GitHub UI16.
X41 recommends to furthermore evaluate the merit of having a separate administrator account
for the repository in order to better protect against individual account takeovers.

15 https://github.com/theupdateframework/python-tuf/16 User Interface

X41 D-Sec GmbH PUBLIC Page 27 of 29

https://github.com/theupdateframework/python-tuf/

Source Code Audit on The Update Framework for Open Source Technology Improvement Fund (OSTIF)

5 About X41 D-Sec GmbH

X41 D-Sec GmbH is an expert provider for application security and penetration testing services.
Having extensive industry experience and expertise in the area of information security, a strong
core security team of world-class security experts enables X41 D-Sec GmbH to perform premium
security services.
X41 has the following references that show their experience in the field:

• Review of the Mozilla Firefox updater1
• X41 Browser Security White Paper2
• Review of Cryptographic Protocols (Wire)3
• Identification of flaws in Fax Machines4,5
• Smartcard Stack Fuzzing6

The testers at X41 have extensive experience with penetration testing and red teaming exercises
in complex environments. This includes enterprise environments with thousands of users and
vendor infrastructures such as the Mozilla Firefox Updater (Balrog).
Fields of expertise in the area of application security encompass security-centered code reviews,
binary reverse-engineering and vulnerability-discovery. Custom research and IT security consult-
ing, as well as support services, are the core competencies of X41. The team has a strong tech-
nical background and performs security reviews of complex and high-profile applications such as
Google Chrome and Microsoft Edge web browsers.
X41 D-Sec GmbH can be reached via https://x41-dsec.de or mailto:info@x41-dsec.de.

1 https://blog.mozilla.org/security/2018/10/09/trusting-the-delivery-of-firefox-updates/2 https://browser-security.x41-dsec.de/X41-Browser-Security-White-Paper.pdf3 https://www.x41-dsec.de/reports/Kudelski-X41-Wire-Report-phase1-20170208.pdf4 https://www.x41-dsec.de/lab/blog/fax/5 https://2018.zeronights.ru/en/reports/zero-fax-given/6 https://www.x41-dsec.de/lab/blog/smartcards/

X41 D-Sec GmbH PUBLIC Page 28 of 29

https://x41-dsec.de
mailto:info@x41-dsec.de
https://blog.mozilla.org/security/2018/10/09/trusting-the-delivery-of-firefox-updates/
https://browser-security.x41-dsec.de/X41-Browser-Security-White-Paper.pdf
https://www.x41-dsec.de/reports/Kudelski-X41-Wire-Report-phase1-20170208.pdf
https://www.x41-dsec.de/lab/blog/fax/
https://2018.zeronights.ru/en/reports/zero-fax-given/
https://www.x41-dsec.de/lab/blog/smartcards/

Source Code Audit on The Update Framework for Open Source Technology Improvement Fund (OSTIF)

Acronyms

2FA Two Factor Authentication . 21
CPU Central Processing Unit . 16
CWE Common Weakness Enumeration . 10
JSON JavaScript Object Notation . 6
NIST National Institute of Standards and Technology . 26
SMS Short Message Service . 21
TOTP Time-based One-Time Password . 21
UI User Interface . 27

X41 D-Sec GmbH PUBLIC Page 29 of 29

	Executive Summary
	Introduction
	Scope
	Findings Overview
	Coverage
	Recommended Further Tests

	Rating Methodology for Security Vulnerabilities
	Common Weakness Enumeration

	Results
	Findings
	TUF-CR-22-01
	TUF-CR-22-02
	TUF-CR-22-03
	TUF-CR-22-04

	Informational Notes
	TUF-CR-22-100
	TUF-CR-22-101
	TUF-CR-22-102
	TUF-CR-22-103
	TUF-CR-22-104
	TUF-CR-22-105
	TUF-CR-22-106
	TUF-CR-22-107

	About X41 D-Sec GmbH

